精英家教网 > 高中数学 > 题目详情
18.据报我国正分别在大连和上海建造两航母,而建造航母必需特种钢.为建造航母的需要,要将两种不同的特种钢板截成A、B、C三种规格,每张钢板可同时截成三种规格的小钢板的块数如下表所示:
规格类型
钢板类型
A规格B规格C规格
第一种钢板211
第二种钢板123
今需要A、B、C三种规格的成品分别15、18、27块.问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?

分析 根据条件设第一种钢板x张,第二种钢板y张,钢板总数z张,建立约束条件和目标函数,利用线性规划的知识进行求解即可.

解答 解:设需要第一种钢板x张,第二种钢板y张,钢板总数z张,则$\left\{\begin{array}{l}2x+y≥15\\ x+2y≥18\\ x+3y≥27\\ x∈N,y∈N\end{array}\right.$目标函数 z=x+y
作出可行域如图所示,作出直线x+y=0.作出一组平行直线x+y=t(其中t为参数).
其中经过可行域内的点且和原点距离最近的直线,
经过直线 x+3y=27和直线 2x+y=15的交点$A(\frac{18}{5},\frac{39}{5})$,直线方程为$x+y=\frac{57}{5}$.
由于$\frac{18}{5}$和$\frac{39}{5}$都不是整数,而最优解(x,y)中,x,y必须都是整数,
所以,可行域内点$A(\frac{18}{5},\frac{39}{5})$不是最优解.
经过可行域内的整点(横坐标和纵坐标都是整数的点),且与原点距离最近的直线是x+y=12.
经过的整点是B(3,9)和C(4,8),它们是最优解.
故要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.

点评 本题主要考查线性规划的应用,利用条件建立约束条件和目标函数,利用目标函数的几何意义求最优解,考查学生解决应用问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)求函数$y=sin(\frac{π}{3}-2x)$,x∈[-π,π]的单调递减区间;
(2)求函数$y=3tan(\frac{π}{6}-\frac{x}{4})$的周期及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=|a|x-$\frac{1}{|a|}$(a≠0且a≠1)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设扇形的周长为8,面积为4,则扇形的圆心角是(弧度)(  )
A.1B.2C.4D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.半径为3,圆心角等于$\frac{2π}{5}$的扇形的面积是$\frac{9π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等边△ABC中,M为△ABC内一动点,∠BMC=120°,则$\frac{MA}{MC}$的最小值是(  )
A.1B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}的前n项和为Sn,若a2=12,a3•a5=4,则下列说法正确的是(  )
A.{an}是单调递减数列B.{Sn}是单调递减数列
C.{a2n}是单调递减数列D.{S2n}是单调递减数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明:$\frac{cosα}{cot\frac{α}{2}-tan\frac{α}{2}}$=$\frac{1}{2}$sinα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≤1}\\{3x-y≥0}\\{y≥0}\end{array}\right.$,则|3x-4y-10|的最大值为$\frac{49}{4}$.

查看答案和解析>>

同步练习册答案