精英家教网 > 高中数学 > 题目详情
15.已知直线l:y=3x+3,试求:
(1)过点P(4,5)与直线l垂直的直线方程;
(2)直线l关于点A(3,2)对称的直线方程.

分析 (1)由已知直线的斜率求出待求直线的斜率,然后利用直线方程的点斜式得答案.
(2)在直线L:y=3x+3上任意取出两个点C(0,3)、D(-1,0),求出这两个点关于点A(3,2)对称点分别为C′、D′的坐标,由题意可得C′、D′是所求直线上的两个点,由两点式求得所求直线的方程.

解答 解:∵直线l:y=3x+3的斜率为3,
∴与直线l垂直的直线的斜率为-$\frac{1}{3}$.
∴过点(4,5)且与直线l垂直的直线方程为y-5=-$\frac{1}{3}$(x-4),即x+3y-19=0.
(2))在直线L:y=3x+3上任意取出两个点C(0,3)、D(-1,0),求出这两个点关于点A(3,2)对称点
分别为C′(6,1)、D′(7,4),
由题意可得C′(6,1)、D′(7,4),是所求直线上的两个点,
由两点式求得所求直线的方程为 $\frac{y-1}{4-1}$=$\frac{x-6}{7-6}$,即 3x-y-17=0.

点评 本题考查了直线的一般式方程与直线垂直间的关系,求一个点关于某直线的对称点的坐标的求法,考查了直线方程的点斜式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为$\frac{1}{3}$,则m+n的值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(-1,0)和圆x2+y2=2上动点P,动点M满足2$\overrightarrow{MA}$=$\overrightarrow{AP}$,则点M的轨迹方程是(  )
A.(x-3)2+y2=1B.(x+$\frac{3}{2}$)2+y2=1C.(x+$\frac{3}{2}$)2+y2=$\frac{1}{2}$D.x2+(y+$\frac{3}{2}$)2=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2};  ④{0,1,2}={2,0,1},其中错误的有③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x∈R|ax2+2x+1=0,a∈R}中只有一个元素,求a的值并求出这个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)-$\frac{5}{2}$log34+log3$\frac{32}{9}$-($\frac{1}{64}$)${\;}^{-\frac{2}{3}}$   
(2)$\sqrt{6\frac{1}{4}}$+$\root{3}{{8}^{2}}$+0.027${\;}^{-\frac{2}{3}}$×(-$\frac{1}{3}$)-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,$c=\sqrt{3}$,b=1,B=30°,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}}}{2}或\sqrt{3}$B.$\frac{{\sqrt{3}}}{4}或\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}或\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.圆心为M(m,0)(m∈Z),半径为5的圆与直线4x+3y-29=0相切.
(1)求圆M的方程;
(2)若直线l1:ax-y+5=0与圆M相交于A、B两点,是否存在实数a,c,使直线l2:4x+3y+c=0垂直平分弦AB?若存在,求直线l1、l2的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1)在“x2+(y-2)2=0是x(y-2)=0的充分不必要条件”中,已知条件是x=0,y=2,结论是x=0或x=2..
(2)在“y=ax2+bx+c的图象过点(1,0)的充要条件是a+b+c=0”中,已知条件是y=ax2+bx+c的图象过点(1,0),结论是a+b+c=0.

查看答案和解析>>

同步练习册答案