精英家教网 > 高中数学 > 题目详情
20.函数y=$\sqrt{3}$sin4x-3cos4x+1的最小正周期和最小值分别是(  )
A.π和1-$\sqrt{3}$B.π和1-2$\frac{π}{2}$$\sqrt{3}$C.$\frac{π}{2}$和1-$\sqrt{3}$D.$\frac{π}{2}$和1-2$\sqrt{3}$

分析 由三角函数中的恒等变换应用化简函数解析式可得y=2$\sqrt{3}$sin(4x-$\frac{π}{3}$)+1,由三角函数的周期性及其求法可求最小正周期,由正弦函数的图象和性质可求最小值.

解答 解:∵y=$\sqrt{3}$sin4x-3cos4x+1=2$\sqrt{3}$sin(4x-$\frac{π}{3}$)+1,
∴最小正周期T=$\frac{2π}{4}$=$\frac{π}{2}$.
∴最小值是:1-2$\sqrt{3}$.
故选:D.

点评 本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数的图象与性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.数组1,2,3,4,a的平均数是2,则它的方差是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c>0,a+b+c=1.求证:
(Ⅰ)$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$
(Ⅱ)$\frac{1}{3a+1}$+$\frac{1}{3b+1}$+$\frac{1}{3c+1}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在三棱锥S-ABC中,△ABC是边长为a的正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C为30°,则三棱锥S-ABC的体积为$\frac{\sqrt{3}}{12}{a}^{3}$,三棱锥S-ABC的外接球半径为$\frac{2a}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=aln(x+1)-x2在区间(1,2)内任取两个实数p,q,且p≠q,不等式$\frac{f(p+1)-f(q+1)}{p-q}$<1恒成立,则实数a的取值范围为(-∞,15].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若△ABC的重心为G,AB=3,AC=4,BC=5,动点P满足$\overrightarrow{GP}=x\overrightarrow{GA}+y\overrightarrow{GB}+z\overrightarrow{GC}$(0≤x,y,z≤1),则点P的轨迹所覆盖的平面区域的面积等于12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)是奇函数,当x>0时,f(x)=x2+ln(x+$\sqrt{1+{x}^{2}}$),则当x<0时,f(x)=(  )
A.-x2+ln(x+$\sqrt{1+{x}^{2}}$)B.x2-ln(x+$\sqrt{1+{x}^{2}}$)C.-x2+ln(-x+$\sqrt{1+{x}^{2}}$)D.x2+ln(x+$\sqrt{1+{x}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了72名居民,按缴费在100~500元,600~1000元,以及年龄在20~39岁,40~59岁之间进行了统计,相关数据如下:
 100~500元 600~1000元 总计
 20~39岁 12 9 31
 40~59岁 24 17 41
 总计 36 36 72
(1)用分层抽样的方法在缴费100~500元之间的居民中随机抽取6人,则年龄在20~39岁之间应抽取几人?(2)在缴费100~500元之间抽取的6人中,随机选取2人进行到户走访,求这2人的年龄都在40~59岁之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆的左焦点为F1,右焦点为F2.若椭圆上存在一点P,满足线段PF2相切于以椭圆的短轴为直径的圆,切点为线段PF2的中点,则该椭圆的离心率为$\frac{{\sqrt{5}}}{3}$.

查看答案和解析>>

同步练习册答案