分析 (Ⅰ)根据函数的解析式化简f(x)+f(1-x)即可;
(Ⅱ)根据an的特点和(Ⅰ)的结论,利用倒序求和法求出数列{an}的通项公式.
解答 解:(Ⅰ)由题意得,f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,
∴f(x)+f(1-x)=$\frac{4^x}{{{4^x}+2}}$+$\frac{{{4^{1-x}}}}{{{4^{1-x}}+2}}$=$\frac{4^x}{{{4^x}+2}}$+$\frac{4}{{4+2•{4^x}}}$=1;
(Ⅱ)∵an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),①
∴an=f(1)+f($\frac{n-1}{n}$)+f($\frac{n-2}{n}$)+…+f($\frac{2}{n}$)+f($\frac{1}{n}$)+f(0)②
由(Ⅰ)知f(x)+f(1-x)=1
∴①+②得,2an=n+1,则an=$\frac{n+1}{2}$.
点评 本题考查利用倒序求和法求数列{an}的通项公式,考查化简、变形能力.
科目:高中数学 来源: 题型:填空题
| 队员i | 1 | 2 | 3 | 4 | 5 | 6 |
| 三分球个数 | a1 | a2 | a3 | a4 | a5 | a6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a1=3,q=2 | B. | a1=-3,q=2 | C. | a1=3,q=-2 | D. | a1=-3,q=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 10 | 15 | 20 | 25 | 30 |
| y | 1 003 | 1 005 | 1 010 | 1 011 | 1 014 |
| A. | $\stackrel{∧}{y}$=0.63x-231.2 | B. | $\stackrel{∧}{y}$=0.56x+997.4 | C. | $\stackrel{∧}{y}$=50.2x+501.4 | D. | $\stackrel{∧}{y}$=60.4x+400.7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com