精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=ax2+ax+1没有零点,则实数a的取值范围为[0,4).

分析 对f(x)的函数类型进行讨论,利用二次函数的性质列不等式解出a的范围.

解答 解:当a=0时,f(x)=1,符合题意.
当a≠0时,f(x)为二次函数,
∵f(x)没有零点,∴△=a2-4a<0,
解得0<a<4.
综上,a的取值范围是[0,4).
故答案为:[0,4).

点评 本题考查了二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设f(x)=lnx-x-k,x∈(0,+∞).
(1)若f[f(1)]<0,求实数k的取值范围;
(2)设函数g(x)=f(x)-kx2的单调递增区间为D,对任意给定的k>0,均有D⊆(0,a](a为与k无关的常数),求证:a的最小值为1.
(3)求证:f(x)在区间(0,e)上有两个零点的充要条件为k∈(1-e,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一物体的运动方程为s=3+t2,则在时间段[2,2.1]内相应的平均速度为(  )
A.4.11B.4.01C.4.0D.4.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,($\frac{a}{{\sqrt{x}}}$-x)6展开式的常数项为15,则$\int_{-a}^a$(x2+x+$\sqrt{1-{x^2}}}$)dx=$\frac{2}{3}+\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\frac{a+2i}{i}$=b+i,(a,b∈R)其中i为虚数单位,则a-b=(  )
A.-3B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边上有一点P的坐标是(3,4),则cosα的值为(  )
A.3B.4C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某校高一年级共有960名学生,要从中抽取32名参与公益活动,欲采取系统抽样方法抽取,为此将学生随机编号为1,2,…,960,分组后采用简单随机抽样的方法第一组抽到的号码为30.抽取的学生编号落入区间[1,350]内的学生参与第一项公益活动,编号落入区间[351,700]内的学生参与第二项公益活动,其余抽取到的学生参与第三项公益活动.则抽到的学生中,参与第三项公益活动的人数是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0.若A∩B有且仅有一个元素,则r的取值集合为(  )
A.{3}B.{7}C.{3,7}D.{2,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.cos13°cos17°-sin17°sin13°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案