10£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬µãAn£¨n£¬$\frac{{a}_{n+1}}{{a}_{n}}$£©ÔÚÖ±Ïßy=kx+1ÉÏ£¬µ±n¡Ý2ʱ£¬¾ùÓÐ$\frac{{a}_{n+1}}{{a}_{n}}$-1=$\frac{{a}_{n}}{{a}_{n-1}}$£®
£¨1£©Çó{an}µÄͨÏʽ£»      
£¨2£©Éèbn=$\frac{2{a}_{n}}{£¨n-1£©!}$•3n£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

·ÖÎö £¨1£©½«µãAn£¨n£¬$\frac{{a}_{n+1}}{{a}_{n}}$£©´úÈëÖ±Ïß·½³Ìy=kx+1ÉÏ£¬½áºÏn=1¡¢n=2¿ÉµÃ$\frac{{a}_{n}}{{a}_{n-1}}$=n£¬´Ó¶øan=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}•¡­•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$=n£¡£»
£¨2£©Í¨¹ýbn=$\frac{2{a}_{n}}{£¨n-1£©!}$•3n¡¢an=n£¡£¬¿ÉÖªbn=2n•3n£¬´Ó¶ø¿ÉµÃSnÓë3SnµÄ²»µÈʽ£¬ÀûÓôíλÏà¼õ·¨¼°µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßµãAn£¨n£¬$\frac{{a}_{n+1}}{{a}_{n}}$£©ÔÚÖ±Ïßy=kx+1ÉÏ£¬
¡à$\frac{{a}_{3}}{{a}_{2}}$=2k+1ÇÒ$\frac{{a}_{2}}{{a}_{1}}$k+1£¬
¡àµ±n=1»òn=2ʱÓÐ$\frac{{a}_{3}}{{a}_{2}}$-$\frac{{a}_{2}}{{a}_{1}}$=k£¬
¡ßµ±n=2ʱ£¬ÓÐ$\frac{{a}_{3}}{{a}_{2}}$-$\frac{{a}_{2}}{{a}_{1}}$=1£¬
¡àk=1£¬
¡à$\frac{{a}_{2}}{{a}_{1}}$=k+1=2£¬
ÓÖ¡ß$\frac{{a}_{n+1}}{{a}_{n}}$-1=$\frac{{a}_{n}}{{a}_{n-1}}$£¬
¡à$\frac{{a}_{n+1}}{{a}_{n}}$-$\frac{{a}_{n}}{{a}_{n-1}}$=1£¬
¡à{$\frac{{a}_{n}}{{a}_{n-1}}$}ÊÇÒÔ2ΪÊ×Ïî¡¢1Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡à$\frac{{a}_{n}}{{a}_{n-1}}$=n£¬
¡àan=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}•¡­•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$=n£¡£»
£¨2£©¡ßbn=$\frac{2{a}_{n}}{£¨n-1£©!}$•3n£¬an=n£¡£¬
¡àbn=$\frac{2¡Án£¡}{£¨n-1£©£¡}•{3}^{n}$=2n•3n£¬
¡ßSn=1¡Á2¡Á3+2¡Á2¡Á32+3¡Á2¡Á33+¡­+£¨n-1£©¡Á2¡Á3n-1+n¡Á2¡Á3n£¬
¡à3Sn=1¡Á2¡Á32+2¡Á2¡Á33+¡­+£¨n-1£©¡Á2¡Á3n+n¡Á2¡Á3n+1£¬
Á½Ê½Ïà¼õ£¬µÃ-2Sn=1¡Á2¡Á3+1¡Á2¡Á32+1¡Á2¡Á33+¡­+1¡Á2¡Á3n-1+1¡Á2¡Á3n-n¡Á2¡Á3n+1
=2£¨3+32+33+¡­+3n-1+3n£©-n¡Á2¡Á3n+1
=$2¡Á\frac{3¡Á£¨1-{3}^{n}£©}{1-3}$-n¡Á2¡Á3n+1
=$2¡Á\frac{3}{2}¡Á{£¨3}^{n}-1£©$-n¡Á2¡Á3n+1£¬
¡àSn=n¡Á3n+1-$\frac{3}{2}¡Á£¨{3}^{n}-1£©$
=$£¨n-\frac{1}{2}£©¡Á{3}^{n+1}$+$\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²éÇóÊýÁеÄͨÏǰnÏîºÍ£¬ÀûÓôíλÏà¼õ·¨Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈën=2015£¬ÔòÊä³öµÄsֵΪ$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª¸´Êýz=£¨a2+a-2£©+£¨a-2£©i£¨a¡ÊR£©£¬Ôò¡°a=1¡±ÊÇ¡°zΪ´¿ÐéÊý¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö·Ç±ØÒªÌõ¼þB£®±ØÒª·Ç³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È·Ç³ä·ÖÒ²·Ç±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªmax{a£¬b}=$\left\{\begin{array}{l}{a£¬a¡Ýb}\\{b£¬a£¼b}\end{array}\right.$ ÉèʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{x+2y¡Ü6}\\{2x+y¡Ü6}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$Ôòmax{2x+3y-1£¬x+2y+2}µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[2£¬9]B£®[-1£¬9]C£®[-1£¬8]D£®[2£¬8]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®´ÓËæ»ú±àºÅΪ0001£¬0002£¬¡­5000µÄ5000Ãû²Î¼ÓÕâ´Îӥ̶ÊÐÄ£Ä⿼ÊÔµÄѧÉúÖÐÓÃϵͳ³éÑùµÄ·½·¨³éȡһ¸öÑù±¾½øÐгɼ¨·ÖÎö£¬ÒÑÖªÑù±¾ÖбàºÅ×îСµÄÁ½¸ö±àºÅ·Ö±ðΪ0018£¬0068£¬ÔòÑù±¾ÖÐ×î´óµÄ±àºÅÓ¦¸ÃÊÇ£¨¡¡¡¡£©
A£®4966B£®4967C£®4968D£®4969

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¼«×ø±êϵÖУ¬Ö±Ïßl£º¦Ñcos¦È=$\frac{1}{2}$ÓëÇúÏßC£º¦Ñ=2cos¦ÈÏཻÓÚA¡¢BÁ½µã£¬OΪ¼«µã£®
£¨1£©Çó¡ÏAOBµÄ´óС£®
£¨2£©Éè°ÑÇúÏßCÏò×óÆ½ÒÆÒ»¸öµ¥Î»ÔÙ¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=y}\end{array}\right.$µÃµ½ÇúÏßC¡ä£¬ÉèM£¨x£¬y£©ÎªÇúÏßC¡äÉÏÈÎÒ»µã£¬Çóx2-$\sqrt{3}$xy+2y2µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®PÊÇ¡÷ABCÄÚÒ»µã£¬ÇÒÂú×ãÌõ¼þ$\overrightarrow{AP}$+2$\overrightarrow{BP}$+3$\overrightarrow{CP}$=$\overrightarrow{0}$£¬ÉèQΪ$\overrightarrow{CP}$ÑÓ³¤ÏßÓëABµÄ½»µã£¬Áî$\overrightarrow{CP}$=p£¬ÓÃp±íʾ$\overrightarrow{CQ}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈôʵÊýa£¬bÂú×ãa2+b2¡Ü1£¬Ôò¹ØÓÚxµÄ·½³Ìx2-2x+a+b=0ÓÐʵÊý¸ùµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{4}+\frac{1}{2¦Ð}$B£®$\frac{3}{4}+\frac{1}{¦Ð}$C£®$\frac{3}{5}+\frac{1}{2¦Ð}$D£®$\frac{3}{5}+\frac{1}{¦Ð}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{sinx£¨sinx¡Ýcosx£©}\\{cosx£¨sinx£¼cosx£©}\end{array}\right.$ÊÔд³öËüµÄÐÔÖÊ£¨ËĸöÒÔÉÏ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸