15£®ÔÚ¼«×ø±êϵÖУ¬Ö±Ïßl£º¦Ñcos¦È=$\frac{1}{2}$ÓëÇúÏßC£º¦Ñ=2cos¦ÈÏཻÓÚA¡¢BÁ½µã£¬OΪ¼«µã£®
£¨1£©Çó¡ÏAOBµÄ´óС£®
£¨2£©Éè°ÑÇúÏßCÏò×óÆ½ÒÆÒ»¸öµ¥Î»ÔÙ¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=y}\end{array}\right.$µÃµ½ÇúÏßC¡ä£¬ÉèM£¨x£¬y£©ÎªÇúÏßC¡äÉÏÈÎÒ»µã£¬Çóx2-$\sqrt{3}$xy+2y2µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄ×ø±ê£®

·ÖÎö £¨1£©°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Çó³öAC£¬DCµÄÖµ£¬¿ÉµÃ¡ÏAOCµÄÖµ£¬´Ó¶øµÃµ½¡ÏAOB=2¡ÏAOCµÄÖµ£»
£¨2£©È·¶¨ÇúÏßC¡äµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓòÎÊý·¨Çóx2-$\sqrt{3}$xy+2y2µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄ×ø±ê£®

½â´ð ½â£º£¨1£©Ö±ÏߦÑcos¦È=$\frac{1}{2}$¼´x=$\frac{1}{2}$£¬ÇúÏߦÑ=2cos¦È ¼´¦Ñ2=2¦Ñcos¦È£¬¼´£¨x-1£©2+y2=1£¬
±íʾÒÔC£¨1£¬0£©ÎªÔ²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£®Èçͼ£®
Rt¡÷ADCÖУ¬¡ßcos¡ÏACO=$\frac{CD}{AC}$=$\frac{1}{2}$£¬¡à¡ÏACO=$\frac{¦Ð}{3}$£¬
ÔÚ¡÷AOCÖУ¬AC=OC£¬¡à¡ÏAOC=$\frac{¦Ð}{3}$£¬¡à¡ÏAOB=2¡ÏAOC=$\frac{2¦Ð}{3}$¡­£¨5·Ö£©
£¨2£©ÇúÏßC£º£¨x-1£©2+y2=1£¬Ïò×óÆ½ÒÆÒ»¸öµ¥Î»ÔÙ¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=y}\end{array}\right.$µÃµ½ÇúÏßC¡äµÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£¬
ÉèM£¨2cos¦Á£¬sin¦Á£©£¬ËùÒÔx2-$\sqrt{3}$xy+2y2=3+2cos£¨2¦Á+$\frac{¦Ð}{3}$£©
¡à$¦Á=k¦Ð+\frac{¦Ð}{3}$ʱ£¬x2-$\sqrt{3}$xy+2y2µÄ×îСֵΪ1
´ËʱµãMµÄ×ø±êΪ£¨1£¬$\frac{\sqrt{3}}{2}$£©»ò£¨-1£¬-$\frac{\sqrt{3}}{2}$£©¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬Ö±ÏߺÍÔ²µÄλÖùØÏµ£¬Çó³ö¡ÏACOÊǽâÌâµÄ¹Ø¼ü£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éèf£¨x£©=x3-3x£¬Èôº¯Êýg£¨x£©=f£¨x£©+f£¨t-x£©ÓÐÁãµã£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨-2\sqrt{3}£¬-2\sqrt{3}£©$B£®$£¨-\sqrt{3}£¬\sqrt{3}£©$C£®$[-2\sqrt{3}£¬2\sqrt{3}]$D£®$[-\sqrt{3}£¬\sqrt{3}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªiΪÐéÊýµ¥Î»£¬Ôòi7=£¨¡¡¡¡£©
A£®1B£®-1C£®iD£®-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏM={x|y=ln£¨1-2x£©}£¬¼¯ºÏN={y|y=ex-3£¬x¡ÊR}£¬Ôò∁RM¡ÉN=£¨¡¡¡¡£©
A£®{x|x$¡Ý\frac{1}{2}$}B£®{y|y£¾0}C£®{x|0£¼x£¼$\frac{1}{2}$}D£®{x|x£¼0}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬µãAn£¨n£¬$\frac{{a}_{n+1}}{{a}_{n}}$£©ÔÚÖ±Ïßy=kx+1ÉÏ£¬µ±n¡Ý2ʱ£¬¾ùÓÐ$\frac{{a}_{n+1}}{{a}_{n}}$-1=$\frac{{a}_{n}}{{a}_{n-1}}$£®
£¨1£©Çó{an}µÄͨÏʽ£»      
£¨2£©Éèbn=$\frac{2{a}_{n}}{£¨n-1£©!}$•3n£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³ÏçÕòΪÁË·¢Õ¹ÂÃÓÎÐÐÒµ£¬¾ö¶¨¼ÓÇ¿Ðû´«£¬¾Ýͳ¼Æ£¬¹ã¸æÖ§³ö·ÑxÓëÂÃÓÎÊÕÈëy£¨µ¥Î»£ºÍòÔª£©Ö®¼äÓÐÈç±í¶ÔÓ¦Êý¾Ý£º
x24568
y3040605070
£¨¢ñ£©ÇóÂÃÓÎÊÕÈëy¶Ô¹ã¸æÖ§³ö·ÑxµÄÏßÐԻع鷽³Ìy=bx+a£¬Èô¹ã¸æÖ§³ö·ÑΪ12ÍòÔª£¬Ô¤²âÂÃÓÎÊÕÈ룻
£¨¢ò£©ÔÚÒÑÓеÄÎå×éÊý¾ÝÖÐÈÎÒâ³éÈ¡Á½×飬¸ù¾Ý£¨¢ñ£©ÖеÄÏßÐԻع鷽³Ì£¬ÇóÖÁÉÙÓÐÒ»×éÊý¾ÝÆäÔ¤²âÖµÓëʵ¼ÊÖµÖ®²îµÄ¾ø¶ÔÖµ²»³¬¹ý5µÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½£ºb=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$£¬a=$\overline{y}$-b$\overline{x}$£¬ÆäÖÐ$\overline{\;}$$\overline{x}$£¬$\overline{y}$ΪÑù±¾Æ½¾ùÖµ£®
²Î¿¼Êý¾Ý£º$\sum_{i=1}^{5}{x}_{i}^{2}$=145£¬$\sum_{i=1}^{5}{y}_{i}^{2}$=13500£¬$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¼¯ºÏM={x|x2-x=0}£¬N={-1£¬0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£®{-1£¬0£¬1}B£®{-1£¬1}C£®{0}D£®¦Õ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©µÄͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽ¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=$\frac{1}{2x-1}$-x3B£®f£¨x£©=$\frac{1}{2x-1}$+x3C£®f£¨x£©=$\frac{1}{2x+1}$-x3D£®f£¨x£©=$\frac{1}{2x+1}$+x3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÈçͼËùʾ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=1£¬AD=2£¬PA¡ÍÆ½ÃæABCD£¬ÇÒPA=1£¬E£¬Q·Ö±ðΪAB£¬BCµÄÖе㣬FÔÚ±ßPDÉÏ£¬$\overrightarrow{PF}=¦Ë\overrightarrow{PD}$£¬¦Ë¡Ê£¨0£¬1£©£®
£¨1£©µ±¦Ë=$\frac{1}{4}$ʱ£¬ÇóÖ¤£ºAQ¡ÍEF£»
£¨2£©ÈôÆ½ÃæPAQÓëÆ½ÃæEFQËù³ÉÈñ¶þÃæ½ÇµÄ´óСΪ60¡ã£¬Çó¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸