| A. | $\frac{3}{4}+\frac{1}{2π}$ | B. | $\frac{3}{4}+\frac{1}{π}$ | C. | $\frac{3}{5}+\frac{1}{2π}$ | D. | $\frac{3}{5}+\frac{1}{π}$ |
分析 易得总的基本事件包含的区域为单位圆,面积S=π,由根的存在性可得满足条件的区域为阴影部分,可求面积S′,由概率公式可得.
解答
解:∵实数a,b满足a2+b2≤1,
∴点(a,b)在单位圆内,圆面积S=π,
∵关于x的方程x2-2x+a+b=0有实数根,
∴△=(-2)2-4(a+b)≥0,
即a+b≤1,表示图中阴影部分,
其面积S′=π-($\frac{1}{4}$π-$\frac{1}{2}×1×1$)=$\frac{3π}{4}$+$\frac{1}{2}$
故所求概率P=$\frac{S′}{S}$=$\frac{3}{4}+\frac{1}{2π}$
故选:A.
点评 本题考查几何概型,涉及一元二次方程根的存在性和不等式与平面区域,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{1}{2x-1}$-x3 | B. | f(x)=$\frac{1}{2x-1}$+x3 | C. | f(x)=$\frac{1}{2x+1}$-x3 | D. | f(x)=$\frac{1}{2x+1}$+x3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 队别 | 北京 | 黑龙江 | 辽宁 | 八一 |
| 人数 | 4 | 6 | 3 | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com