【题目】从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如下表:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
身高x | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
体重y | 52 | 52 | 53 | 55 | 54 | 56 | 56 |
(1)求y关于x的回归方程;
(2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
,(
为参数),以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
相交于点
,将
逆时针旋转
后,与曲线
相交于点
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在直角梯形中
,
,
,
,点
是
边的中点,将
沿
折起,使平面
平面
,连接
,
,
,得到如图②所示的几何体.
![]()
(1)求证:
平面
;
(2)若
,二面角
的平面角的正切值为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
,
.
(1)求直线
与圆
相切的概率;
(2)将
,
,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的右焦点为
点的坐标为
,
为坐标原点,
是等腰直角三角形.
(1)求椭圆
的方程;
(2)经过点
作直线
交椭圆
于
两点,求
面积的最大值;
(3)是否存在直线
交椭圆于
两点,使点
为
的垂心(垂心:三角形三边高线的交点)?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平行四边形
中,
,
,
,
是线段
的中点,现沿
进行翻折,使得
与
重合,得到如图所示的四棱锥
.
![]()
(1)证明:
平面
;
(2)若
是等边三角形,求平面
和平面
所成的锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com