精英家教网 > 高中数学 > 题目详情

【题目】从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如下表:

编号

1

2

3

4

5

6

7

身高x

163

164

165

166

167

168

169

体重y

52

52

53

55

54

56

56

1)求y关于x的回归方程;

2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重.

【答案】1;(2)这名大学生的身高和体重的变化具有正的线性相关关系,

【解析】

1)利用表格中的数据,计算出,再根据公式求出,得到关于的回归方程;

(2)根据求出的回归方程进行分析,代入,得到所求答案.

1

所以

所以关于的回归方程为:.

(2)根据(1)中所得,由

可知这名大学生的身高和体重的变化具有正的线性相关关系,

代入,得到).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程和曲线的直角坐标方程;

2)若射线与曲线相交于点,将逆时针旋转后,与曲线相交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是连续的偶函数,且时, 是单调函数,则满足的所有之积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形中,点边的中点,将沿折起,使平面平面,连接,得到如图②所示的几何体.

1)求证:平面

2)若,二面角的平面角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为.

(1)求直线与圆相切的概率;

(2)将,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的右焦点为点的坐标为为坐标原点,是等腰直角三角形.

(1)求椭圆的方程;

(2)经过点作直线交椭圆两点,求面积的最大值;

(3)是否存在直线交椭圆于两点,使点的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形中,是线段的中点,现沿进行翻折,使得重合,得到如图所示的四棱锥.

1)证明:平面

2)若是等边三角形,求平面和平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其准线的距离为2.

(1)求抛物线的方程;

(2)如图为抛物线上三个点,,若四边形为菱形,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求函数的单调区间;

2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案