11£®É躯Êýf£¨x£©=ex-ax£¬ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬a¡ÊR£®
£¨1£©Èôº¯Êýy=f£¨x£©µÄͼÏóÔÚx=ln2´¦µÄÇÐÏßlµÄÇãб½ÇΪ0£¬ÇóÇÐÏßlµÄ·½³Ì£»
£¨2£©¼Çº¯Êýy=f£¨x£©Í¼ÏóΪÇúÏßC£¬ÉèµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¨x1£¼x2£©ÊÇÇúÏßCÉϲ»Í¬µÄÁ½¶¨µã£¬¼ÇÖ±ÏßABµÄбÂÊΪk£®
¢ÙÈôx1=-x2£¬µãMΪÏß¶ÎABµÄÖе㣬¹ýµãM×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚµãN£¬ÊÔÎÊ£¬ÇúÏßCÔÚµãN´¦µÄÇÐÏßÊÇ·ñƽÐÐÓÚÖ±ÏßAB£¿Çë˵Ã÷ÀíÓÉ£»
¢ÚÊÇ·ñ´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹f¡ä£¨x0£©£¼k£¿Èô´æÔÚ£¬Çóx0µÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çóµ¼Êý£¬ÀûÓú¯Êýy=f£¨x£©µÄͼÏóÔÚx=ln2´¦µÄÇÐÏßlµÄÇãб½ÇΪ0£¬Çó³öa£¬¼´¿ÉÇóÇÐÏßlµÄ·½³Ì£»
£¨2£©¢ÙÉè³öÏß¶ÎABµÄÖеãMµÄ×ø±ê£¬µÃµ½NµÄ×ø±ê£¬ÓÉÁ½µãʽÇó³öABµÄбÂÊ£¬ÔÙÓɵ¼ÊýµÃµ½ÇúÏßC¹ýNµãµÄÇÐÏßµÄбÂÊ£¬ÓÉбÂÊÏàµÈµÃ$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{2{x}_{2}}$-a=1-a£¬¹¹Ô캯Êý£¬È·¶¨µ¥µ÷ÐÔ£¬¼´¿ÉµÃ³ö½áÂÛ£»
¢Ú¸ù¾ÝÌâÒ⣬ÓÉÖ±ÏßµÄбÂʹ«Ê½¿ÉµÃ£¬k=$\frac{f£¨{x}_{2}£©-f£¨{x}_{1}£©}{{x}_{2}-{x}_{1}}$£¬Áî¦Õ£¨x£©=f¡ä£¨x£©-k=ex-$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$£¬¿ÉÒÔÇó³ö¦Õ£¨x1£©Óë¦Õ£¨x2£©µÄÖµ£¬ÁîF£¨t£©=et-t-1£¬Ç󵼿ɵÃF¡ä£¨t£©=et-1£¬·Öt£¾0Óët£¼0ÌÖÂۿɵÃF£¨t£©µÄ×îСֵΪF£¨0£©=0£¬Ôòµ±t¡Ù0ʱ£¬F£¨t£©£¾F£¨0£©=0£¬¼´et-t-1£¾0£¬½ø¶øÌÖÂۿɵæգ¨x1£©£¼0¡¢¦Õ£¨x2£©£¾0£¬½áºÏº¯ÊýµÄÁ¬ÐøÐÔ·ÖÎö¿ÉµÃ´ð°¸£®

½â´ð ½â£ºf¡ä£¨x£©=ex-a£®
£¨1£©Óɺ¯Êýy=f£¨x£©µÄͼÏóÔÚx=ln2´¦µÄÇÐÏßlµÄÇãб½ÇΪ0£¬
¼´f¡ä£¨ln2£©=tan0=0£¬
Ôòeln2-a=0£¬¼´a=2£¬
ÓÖf£¨ln2£©=2-2ln2£¬
¹ÊÇÐÏßlµÄ·½³ÌΪy=2-2ln2£»
£¨2£©¢ÙÓÉÌâÒâÖªx1=-x2£¬k=$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$-a=$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{2{x}_{2}}$-a£¬
µãNµÄºá×ø±êΪ$\frac{{x}_{1}+{x}_{2}}{2}$=0£¬
ÇúÏßCÔÚµãN´¦ÇÐÏßбÂÊk¡ä=f¡ä£¨0£©=1-a£¬
¼ÙÉèÇúÏßCÔÚµãN´¦µÄÇÐÏ߯½ÐÐÓÚÖ±ÏßAB£¬
Ôò$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{2{x}_{2}}$-a=1-a£¬¼´${e}^{{x}_{2}}$-$\frac{1}{{e}^{{x}_{2}}}$-2x2=0£¬ÆäÖÐx2£¾0£¬
Éèg£¨x£©=ex-$\frac{1}{{e}^{x}}$-2x£¨x£¾0£©£¬g¡ä£¨x£©=£©=ex+$\frac{1}{{e}^{x}}$-2¡Ý0£¬
Ôòg£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬Ôòg£¨x£©£¾g£¨0£©=0£¬
¹Ê${e}^{{x}_{2}}$-$\frac{1}{{e}^{{x}_{2}}}$-2x2=0²»³ÉÁ¢£¬
Òò´ËÇúÏßCÔÚµãN´¦µÄÇÐÏß²»Æ½ÐÐÓÚÖ±ÏßAB£»
¢ÚÓÉÌâÒâÖª£¬k=$\frac{f£¨{x}_{2}£©-f£¨{x}_{1}£©}{{x}_{2}-{x}_{1}}$£¬£® 
Áî¦Õ£¨x£©=f¡ä£¨x£©-k=ex-$\frac{{e}^{{x}_{2}}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$£¬
Ôò¦Õ£¨x1£©=-$\frac{{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$[${e}^{{x}_{2}-{x}_{1}}$-£¨x2-x1£©-1]£¬
¦Õ£¨x2£©=$\frac{{e}^{{x}_{2}}}{{x}_{2}-{x}_{1}}$[${e}^{{x}_{1}-{x}_{2}}$-£¨x1-x2£©-1]£® 
ÁîF£¨t£©=et-t-1£¬ÔòF'£¨t£©=et-1£®
µ±t£¼0ʱ£¬F'£¨t£©£¼0£¬F£¨t£©µ¥µ÷µÝ¼õ£»µ±t£¾0ʱ£¬F'£¨t£©£¾0£¬F£¨t£©µ¥µ÷µÝÔö£®
¹Êµ±t=0£¬F£¨t£©£¾F£¨0£©=0£¬¼´et-t-1£¾0£®
´Ó¶ø${e}^{{x}_{2}-{x}_{1}}$-£¨x2-x1£©-1£¾0£¬${e}^{{x}_{1}-{x}_{2}}$-£¨x1-x2£©-1£¾0 
ÓÖ$\frac{{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$£¾0£¬$\frac{{e}^{{x}_{2}}}{{x}_{2}-{x}_{1}}$£¾0£¬ËùÒÔ¦Õ£¨x1£©£¼0£¬¦Õ£¨x2£©£¾0£®
ÒòΪº¯Êýy=¦Õ£¨x£©ÔÚÇø¼ä[x1£¬x2]ÉϵÄͼÏóÊÇÁ¬Ðø²»¶ÏµÄÒ»ÌõÇúÏߣ¬
ËùÒÔ´æÔÚx0¡Ê£¨x1£¬x2£©Ê¹¦Õ£¨x0£©=0£¬¼´f'£¨x0£©=k³ÉÁ¢£®
¹Ê²»´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹f¡ä£¨x0£©£¼k£®

µãÆÀ ±¾Ì⿼²éÀûÓõ¼ÊýÇóº¯ÊýµÄÇÐÏß·½³Ì£¬ÑµÁ·ÁËÀûÓù¹Ô캯Êý·¨Ö¤Ã÷ÎÊÌâ£¬Éæ¼°×î´óÖµ¡¢×îСֵµÄÇó·¨ÒÔ¼°ºã³ÉÁ¢ÎÊÌ⣬¹Ø¼üÊÇÀí½âµ¼ÊýµÄ·ûºÅÓëµ¥µ÷ÐԵĹØÏµ£¬²¢ÄÜÕýÈ·Çó³öº¯ÊýµÄµ¼Êý£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®»­³öº¯Êýy=$\frac{x{a}^{x}}{|x|}$£¨0£¼a£¼1£©µÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Çó×÷y=|x2+3x-4|µÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êýy=arcsin£¨x-2£©¶¨ÒåÓòΪ[1£¬3]£¬ÖµÓòΪ[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÀûÓüÆËã»úÔÚÇø¼ä£¨0£¬1£©ÉϲúÉúÁ½¸öËæ»úÊýaºÍb£¬Ôò¹ØÓÚxµÄ·½³Ìx2+2ax+b=0ÓÐʵ¸ùµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{1}{6}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®£¨1£©Ê¹a£¾b³ÉÁ¢µÄÒ»¸ö³ä·Ö±ØÒªÌõ¼þÊÇa+c£¾b+c
£¨2£©Ê¹a£¾b³ÉÁ¢µÄÒ»¸ö±ØÒª²»³ä·ÖÌõ¼þÊÇa£¾b-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®º¯Êýf£¨x£©=$\sqrt{x}$ºÍg£¨x£©=$\frac{1}{\sqrt{-x}}$Ïà¼ÓËùµÃf£¨x£©+g£¨x£©»¹ÊǺ¯ÊýÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÃüÌâ¡°¶ÔÈÎÒâÒ»¸öʵÊýx£¬¶¼ÓÐ2x+4¡Ý0¡±µÄ·ñ¶¨ÊÇ´æÔÚʵÊýx£¬Ê¹µÃ2x+4£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÕýÈý½ÇÐÎABCµÄ±ß³¤Îª2£¬Ôò¡÷ABCµÄˮƽ·ÅÖÃÖ±¹Ûͼ¡÷A¡äB¡äC¡äµÄÃæ»ýΪ$\frac{\sqrt{6}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸