精英家教网 > 高中数学 > 题目详情
已知a,b,c分别为△ABC三个内角A,B,C的对边,c=
3
asinC+ccosA.
(1)求角A;
(2)若a=2
3
,△ABC的面积为
3
,求△ABC的周长.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)已知等式利用正弦定理化简,根据sinC不为0,得到关系式,利用两角和与差的正弦函数公式化为一个角的三角函数值,利用特殊角的三角函数值求出A的度数即可;
(2)利用三角形面积公式列出关系式,将sinA,已知面积代入求出bc的值,再利用余弦定理列出关系式,将a,bc,cosA的值代入求出b+c的值,即可出三角形ABC周长.
解答: 解:(1)由c=
3
asinC+ccosA,利用正弦定理化简得:sinC=
3
sinAsinC+sinCcosA,
∵sinC≠0,
3
sinA+cosA=1,即2sin(A+
π
6
)=1,
∴sin(A+
π
6
)=
1
2

又0<A<π,
π
6
<A+
π
6
6

则A+
π
6
=
6
,即A=
3

(2)∵△ABC的面积S=
1
2
bcsinA=
3
,sinA=
3
2

∴bc=4,
由余弦定理知a2=b2+c2-2bccosA=b2+c2+bc,得a2+bc=(b+c)2
代入a=2
3
,bc=4,
解得:b+c=4,
则△ABC周长为4+2
3
点评:此题考查了正弦、余弦定理,三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={0,1,2,3},B={0,2,4},则集合A∪B=(  )
A、{1,2}
B、{1,2,3,4}
C、{0,1,2,3,4}
D、{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为(  )
A、
1
3
B、
1
9
C、
1
27
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是(  )
A、函数f(x)在区间(-2,0)上是减函数
B、函数f(x)在区间(1,3)上是减函数
C、函数f(x)在区间(0,2)上是减函数
D、函数f(x)在区间(3,4)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

1+C271+C272+C2727除以3所得余数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(
3
2
)x,x≥0
2x,x<0
,若对任意x∈[-1-m,m-1],不等式f(
2
x-m)≥[f(x)]3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,(x>0,a>0).
(1)当a=4时,求函数f(x)的最小值;
(2)若函数f(x)>-x+4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1的底面是正方形,且侧棱和底面垂直.
(Ⅰ)求证:BD⊥平面ACC1A1
(Ⅱ)当ABCD-A1B1C1D1为正方体时,求二面角C1-BD-C的正切值及及异面直线BC1与AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数Z满足 (1+2i)Z=4+3i,求Z及|Z|(i是虚数单位)

查看答案和解析>>

同步练习册答案