【题目】设
、
为平面向量,若存在不全为零的实数λ,μ使得λ
+μ
=0,则称
、
线性相关,下面的命题中,
、
、
均为已知平面M上的向量. ①若
=2
,则
、
线性相关;
②若
、
为非零向量,且
⊥
,则
、
线性相关;
③若
、
线性相关,
、
线性相关,则
、
线性相关;
④向量
、
线性相关的充要条件是
、
共线.
上述命题中正确的是(写出所有正确命题的编号)
【答案】①④
【解析】解:若
、
线性相关,假设λ≠0,则
=﹣
,故
和
是共线向量.
反之,若
和
是共线向量,则
=﹣
,即λ
+μ
=0,故
和
线性相关.
故
和
线性相关 等价于
和
是共线向量.①若
=2
,则
﹣2
=0,故
和
线性相关,故①正确.②若
和
为非零向量,
⊥
,则
和
不是共线向量,不能推出
和
线性相关,故②不正确.③若
和
线性相关,则
和
线性相关,不能推出若
和
线性相关,例如当
=
时,
和
可以是任意的两个向量.故③不正确.④向量
和
线性相关的充要条件是
和
是共线向量,故④正确.
所以答案是 ①④.
【考点精析】通过灵活运用向量的共线定理,掌握设
,
,其中
,则当且仅当
时,向量
、
共线即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC. ![]()
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据环保部通报,2016年10月24日起,京津冀周边雾霾又起,为此,环保部及时提出防控建议,推动应对工作由过去“大水漫灌式”的减排方式转变为实现精确打击.某燃煤企业为提高应急联动的同步性,新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对大气环境的污染,已知过滤后废气的污染物数量N(单位:mg/L)与过滤时间t(单位:小时)间的关系为N(t)=N0e﹣λt(N0 , λ均为非零常数,e为自然对数的底数)其中N0为t=0时的污染物数量,若经过5小时过滤后污染物数量为
N0 .
(1)求常数λ的值;
(2)试计算污染物减少到最初的10%至少需要多少时间?(精确到1小时) 参考数据:ln3≈1.10,ln5≈1.61,ln10≈2.30.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin(x﹣
)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移
个单位,得到的图象对应的解析式是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示: ![]()
(1)试确定f(x)的解析式;
(2)若f(
)=
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F. ![]()
(1)求证PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x2﹣
在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围( )
A.[1,+∞)
B.[1,
)
C.[1,+2)
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E为PD中点. ![]()
(1)求证:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com