| A. | ($\frac{1}{8}$,$\frac{1}{4}$) | B. | ($\frac{1}{12}$,$\frac{1}{4}$) | C. | ($\frac{1}{12}$,$\frac{1}{8}$) | D. | ($\frac{1}{8}$,1) |
分析 根据定义得出$\frac{f(2a)-f(0)}{2a}$=8a2-2a,相当于6x2-2x=8a2-2a在[0,2a]上有两个根,利用二次函数的性质解出a的范围即可.
解答 解:f(x)=2x3-x2+m是[0,2a]上的“双中值函数”,
∴$\frac{f(2a)-f(0)}{2a}$=8a2-2a,
∵f'(x)=6x2-2x,
∴6x2-2x=8a2-2a在[0,2a]上有两个根,
令g(x)=6x2-2x-8a2+2a,
∴△=4+24(8a2-2a)>0,
g(0)>0,
g(2a)>0,
2a>$\frac{1}{6}$,
∴$\frac{1}{8}$<a<$\frac{1}{4}$.
故选A.
点评 考查了新定义类型题的解题方法,重点是对新定义性质的理解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5-2$\sqrt{2}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | 6-3$\sqrt{2}$ | D. | $\sqrt{6-3\sqrt{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$+1 | D. | $\frac{\sqrt{5}+1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com