| A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$+1 | D. | $\frac{\sqrt{5}+1}{2}$ |
分析 由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),可得P为FQ的中点,设F(c,0),一条渐近线方程和垂直的垂线方程,求得交点P的坐标,由中点坐标公式可得Q的坐标,代入抛物线的方程,结合离心率公式,解方程可得所求值.
解答 解:由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),可得P为FQ的中点,
设F(c,0),由渐近线方程y=$\frac{b}{a}$x,①
可设直线FP的方程为y=-$\frac{a}{b}$(x-c),②
由①②解得P($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由中点坐标公式可得Q($\frac{2{a}^{2}}{c}$-c,$\frac{2ab}{c}$),
代入抛物线的方程可得$\frac{4{a}^{2}{b}^{2}}{{c}^{2}}$=2p•($\frac{2{a}^{2}}{c}$-c),③
由题意可得c=$\frac{p}{2}$,即2p=4c,
③即有c4-a2c2-a4=0,
由e=$\frac{c}{a}$可得e4-e2-1=0,
解得e2=$\frac{1+\sqrt{5}}{2}$.
故选:D.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和中点坐标公式,以及点满足抛物线的方程,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 由金、银、铜、铁可导电,猜想:金属都可以导电 | |
| B. | 猜想数列5,7,9,11,…的通项公式为an=2n+3 | |
| C. | 由正三角形的性质得出正四面体的性质 | |
| D. | 半径为r的圆的面积S=π•r2,则单位圆的面积S=π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{8}$,$\frac{1}{4}$) | B. | ($\frac{1}{12}$,$\frac{1}{4}$) | C. | ($\frac{1}{12}$,$\frac{1}{8}$) | D. | ($\frac{1}{8}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2sin($\frac{2}{3}$x-$\frac{π}{9}$) | B. | y=2sin($\frac{2}{3}$x-$\frac{2π}{3}$) | C. | y=2sin($\frac{2}{3}$x-$\frac{5π}{9}$) | D. | y=2sin(6x-$\frac{7π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com