精英家教网 > 高中数学 > 题目详情
12.已知抛物线y2=4px(p>0)的焦点也是双曲线$\frac{{x}^{2}}{3p+8}$-$\frac{{y}^{2}}{p+4}$=1的一个焦点,则p=6.

分析 利用抛物线、双曲线的性质,建立方程,即可得出结论.

解答 解:抛物线y2=4px(p>0)的焦点坐标为(p,0),双曲线$\frac{{x}^{2}}{3p+8}$-$\frac{{y}^{2}}{p+4}$=1的一个焦点坐标为($\sqrt{4p+12}$,0)
∵抛物线y2=4px(p>0)的焦点也是双曲线$\frac{{x}^{2}}{3p+8}$-$\frac{{y}^{2}}{p+4}$=1的一个焦点,
∴4p+12=p2
∴p2-4p-12=0,
∵p>0,
∴p=6.
故答案为:6.

点评 本题考查抛物线、双曲线的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求下列各式的值:
(1)cos$\frac{25π}{3}$+tan($\frac{15π}{4}$);
(2)sin810°+tan765°-cos360°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“e是无限不循环小数,所以e为无理数.”该命题是演绎推理中的三段论推理,其中大前提是(  )
A.无理数是无限不循环小数B.有限小数或有限循环小数为有理数
C.无限不循环小数是无理数D.无限小数为无理数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.滕州市正在积极创建国家森林城市,为加快生态环境建设,每年用于改造生态环境总费用为x亿元,其中用于风景区改造的为y亿元.我市决定制定生态环境改造投资方案,该方案要求同时具备下列两个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若每年改造生态环境的总费用至少1亿元,至多4亿元,请你分析能否采用函数模型y=$\frac{1}{100}$(x3+4x+16)作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取40名学生的成绩作为样本,得到频率分布表如表:
分数[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
频数2812a62
频率0.050.200.30b0.150.05
(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在答题卡中作出样本频率分布直方图;

(Ⅱ)用样本估计总体,估计这个班这次数学成绩的平均数.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2的直线交双曲线于A,B两点,连结AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,则双曲线的离心率为(  )
A.5-2$\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.6-3$\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作渐近线的垂线,设垂足为P(P为第一象限的点),延长FP交抛物线y2=2px(p>0)于点Q,其中该双曲线与抛物线有一个共同的焦点,若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),则双曲线的离心率的平方为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数4+3i的虚部为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是6.
(1)求椭圆C的方程;
(2)设圆T:(x-t)2+y2=$\frac{4}{9}$,过椭圆的上顶点M作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(0,1)时,求EF的斜率的取值范围.

查看答案和解析>>

同步练习册答案