精英家教网 > 高中数学 > 题目详情
16.已知函数y=2sin($\frac{2}{9}$x-$\frac{20π}{27}$),把它的图象向左平移$\frac{π}{3}$个单位,再使其图象上每点的纵坐标不变,横坐标缩小为原来的$\frac{1}{3}$,得到的图象对应的解析式为(  )
A.y=2sin($\frac{2}{3}$x-$\frac{π}{9}$)B.y=2sin($\frac{2}{3}$x-$\frac{2π}{3}$)C.y=2sin($\frac{2}{3}$x-$\frac{5π}{9}$)D.y=2sin(6x-$\frac{7π}{3}$)

分析 根据函数图象的变换规律依次得出函数解析式.

解答 解:将函数y=2sin($\frac{2}{9}$x-$\frac{20π}{27}$)的图象向左平移$\frac{π}{3}$个单位,得到y=2sin[$\frac{2}{9}$(x+$\frac{π}{3}$)-$\frac{20π}{27}$]=2sin($\frac{2}{9}x$-$\frac{2π}{3}$).
将y=2sin($\frac{2}{9}x$-$\frac{2π}{3}$)图象上每点的纵坐标不变,横坐标缩小为原来的$\frac{1}{3}$,得到y=2sin($\frac{2}{3}$x-$\frac{2π}{3}$).
故选B.

点评 本题考查了函数图象的变换,掌握变换规律是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆x2+y2=4上一点P(x0,y0)(x0y0>0)处的切线l分别交x轴、y轴于点A,B,以A,B为顶点且以O为中心的椭圆记作C,直线OP交C于M,N两点.
(Ⅰ)若P点坐标为($\sqrt{3}$,1),求椭圆C的离心率;
(Ⅱ)证明|MN|<4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取40名学生的成绩作为样本,得到频率分布表如表:
分数[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
频数2812a62
频率0.050.200.30b0.150.05
(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在答题卡中作出样本频率分布直方图;

(Ⅱ)用样本估计总体,估计这个班这次数学成绩的平均数.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作渐近线的垂线,设垂足为P(P为第一象限的点),延长FP交抛物线y2=2px(p>0)于点Q,其中该双曲线与抛物线有一个共同的焦点,若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),则双曲线的离心率的平方为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-a|+a,若不等式f(x)<6的解集为(-1,3),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数4+3i的虚部为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A,B为不相等的非空集合,则“x∈A∪B”是“x∈A∩B”的必要不充分条件(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.2016(10)=31031(5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果实数x,y满足条$\left\{\begin{array}{l}{2x-y-1≥0}\\{2x+y-4≤0}\\{y-1≥0}\end{array}\right.$则z=$\frac{2x-y}{x}$的最大值为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案