精英家教网 > 高中数学 > 题目详情
15.下面几种推理中是演绎推理的是(  )
A.由金、银、铜、铁可导电,猜想:金属都可以导电
B.猜想数列5,7,9,11,…的通项公式为an=2n+3
C.由正三角形的性质得出正四面体的性质
D.半径为r的圆的面积S=π•r2,则单位圆的面积S=π

分析 本题考查的是演绎推理的定义,判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,能否从推理过程中找出“三段论”的三个组成部分.

解答 解:选项A是由特殊到一般的推理过程,为归纳推理,
选项B,是由特殊到一般的推理过程,为归纳推理,
选项C:是由特殊到与它类似的另一个特殊的推理过程,是类比推理,
选项D半径为r圆的面积S=πr2,因为单位圆的半径为1,则单位圆的面积S=π中,
半径为r圆的面积S=πr2,是大前提
单位圆的半径为1,是小前提
单位圆的面积S=π为结论.
故选:D.

点评 判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.
判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.
判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,能否从推理过程中找出“三段论”的三个组成部分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,直线l:y=kx+$\sqrt{3}$过C的一个焦点F,O为坐标原点.
(1)求椭圆C的方程;
(2)若A(x1,y1),B(x2,y2)是椭圆上的两点,$\overrightarrow{m}$=($\frac{{x}_{1}}{b}$,$\frac{{y}_{1}}{a}$),$\overrightarrow{n}$=($\frac{{x}_{2}}{b}$,$\frac{{y}_{2}}{a}$)且$\overrightarrow{m}$⊥$\overrightarrow{n}$,试问:△AOB的面积是否为定值?如果是,求出这个值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆x2+y2=4上一点P(x0,y0)(x0y0>0)处的切线l分别交x轴、y轴于点A,B,以A,B为顶点且以O为中心的椭圆记作C,直线OP交C于M,N两点.
(Ⅰ)若P点坐标为($\sqrt{3}$,1),求椭圆C的离心率;
(Ⅱ)证明|MN|<4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“e是无限不循环小数,所以e为无理数.”该命题是演绎推理中的三段论推理,其中大前提是(  )
A.无理数是无限不循环小数B.有限小数或有限循环小数为有理数
C.无限不循环小数是无理数D.无限小数为无理数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,抛物线:y2=4mx(m>0)和圆:x2+y2-2mx=0,直线l经过抛物线的焦点,依次交抛物线,圆于A,B,C,D四点,|AB|•|CD|=2,则m的值为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.滕州市正在积极创建国家森林城市,为加快生态环境建设,每年用于改造生态环境总费用为x亿元,其中用于风景区改造的为y亿元.我市决定制定生态环境改造投资方案,该方案要求同时具备下列两个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若每年改造生态环境的总费用至少1亿元,至多4亿元,请你分析能否采用函数模型y=$\frac{1}{100}$(x3+4x+16)作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取40名学生的成绩作为样本,得到频率分布表如表:
分数[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
频数2812a62
频率0.050.200.30b0.150.05
(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在答题卡中作出样本频率分布直方图;

(Ⅱ)用样本估计总体,估计这个班这次数学成绩的平均数.(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作渐近线的垂线,设垂足为P(P为第一象限的点),延长FP交抛物线y2=2px(p>0)于点Q,其中该双曲线与抛物线有一个共同的焦点,若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),则双曲线的离心率的平方为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.2016(10)=31031(5)

查看答案和解析>>

同步练习册答案