·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµ±MΪÍÖÔ²µÄ¶ÌÖáµÄ¶Ëµãʱ£¬¡÷MF1F2µÄÃæ»ýÈ¡µÃ×î´óÖµbc£¬ÇÒΪ1£¬ÔÙÓÉa£¬b£¬c µÄ¹ØÏµ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±ÏßlµÄ·½³Ìy=kx+m£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬Í¨¹ýx1¡¢x2Âú×ã·½³Ì$\frac{{x}^{2}}{2}$+£¨kx+m£©2=1¡¢ÀûÓøùµÄÅбðʽ´óÓÚÁã¡¢»¯¼ò¿ÉÖª2k2+1£¾m2£¬ÀûÓÃÖ±ÏßAF1¡¢l¡¢BF1µÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁм°y1=kx1+m¡¢y2=kx2+m¡¢¼ÆËã¿ÉÖªx1+x2+2=0£¬½áºÏΤ´ï¶¨Àí¿ÉÖªm=k+$\frac{1}{2k}$£¬½ø¶ø¿ÉÖª|k|£¾$\frac{\sqrt{2}}{2}$£¬Í¨¹ýµãµ½Ö±ÏߵľàÀ빫ʽ¡¢½áºÏ|k|£¾$\frac{\sqrt{2}}{2}$¡¢Í¨¹ý»»Ôªt=$\sqrt{1+\frac{1}{{k}^{2}}}$¡¢»¯¼ò¿ÉÖªµãF2£¨1£¬0£©µ½Ö±Ïßl£ºy=kx+mµÄ¾àÀëd=$\frac{1}{2}$£¨t+$\frac{3}{t}$£©£¬Í¨¹ý½èÖúº¯Êýf£¨t£©=$\frac{1}{2}$£¨t+$\frac{3}{t}$£©ÔÚ[1£¬$\sqrt{3}$]Éϵ¥µ÷µÝ¼õ¿ÉÖªf£¨$\sqrt{3}$£©£¼d£¼f£¨1£©£¬½ø¶ø¼ÆËã¼´µÃ½áÂÛ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬
µ±MΪÍÖÔ²¶ÌÖáµÄÒ»¸ö¶Ëµãʱ£¬¡÷MF1F2µÄÃæ»ýÈ¡µÃ×î´óÖµ1£¬
¼´ÓÐ$\frac{1}{2}$b•2c=1£¬¼´bc=1£¬ÓÖa2-b2=c2£¬
½âµÃa=$\sqrt{2}$£¬b=c=1£¬
¼´ÓÐÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨2£©F1£¬F2·Ö±ðÊÇÍÖÔ²$\frac{{x}^{2}}{2}$+y2=1µÄ×ó¡¢ÓÒ½¹µã£¬
¿ÉµÃF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+m£¬µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
Ôòx1¡¢x2Âú×ã·½³Ì$\frac{{x}^{2}}{2}$+£¨kx+m£©2=1£¬¼´£¨2k2+1£©x2+4kmx+£¨2m2-2£©=0£¬¢Ù
ÓÉÓÚµãA¡¢B²»Öغϣ¬ÇÒÖ±ÏßlµÄбÂÊ´æÔÚ£¬
¹Êx1¡¢x2ÊÇ·½³Ì¢ÙµÄÁ½¸ö²»Í¬Êµ¸ù£¬
Òò´Ë¡÷=£¨4km£©2-4•£¨2k2+1£©•£¨2m2-2£©=8£¨2k2+1-m2£©£¾0£¬
¼´2k2+1£¾m2£¬¢Ú£¬x1+x2=-$\frac{4km}{1+2{k}^{2}}$£¬
ÓÉÖ±ÏßAF1¡¢l¡¢BF1µÄбÂÊ$\frac{{y}_{1}}{{x}_{1}+1}$¡¢k¡¢$\frac{{y}_{2}}{{x}_{2}+1}$ÒÀ´Î³ÉµÈ²îÊýÁУ¬
¿ÉµÃ$\frac{{y}_{1}}{{x}_{1}+1}$+$\frac{{y}_{2}}{{x}_{2}+1}$=2k£¬
ÓÖy1=kx1+m£¬y2=kx2+m£¬
¼´ÓУ¨kx1+m£©•£¨x2+1£©+£¨kx2+m£©•£¨x1+1£©=2k£¨x1+1£©•£¨x2+1£©£¬
»¯¼ò²¢ÕûÀíµÃ£º£¨m-k£©£¨x1+x2+2£©=0£®
¼ÙÉèm=k£¬ÔòÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+k£¬¼´Ö±Ïßl¾¹ýµãF1£¨-1£¬0£©£¬²»·ûºÏÌõ¼þ£¬
Ôòx1+x2+2=0£¬
ÓÉ·½³Ì¢Ù¼°Î¤´ï¶¨Àí¿ÉÖª£º$\frac{4km}{1+2{k}^{2}}$=-£¨x1+x2£©=2£¬
¼´m=k+$\frac{1}{2k}$£¬¢Û
ÓÉ¢Ú¡¢¢Û¿ÉÖª£¬2k2+1£¾m2=£¨k+$\frac{1}{2k}$£©2£¬
»¯¼òµÃ£ºk2£¾$\frac{1}{4{k}^{2}}$£¬ÕâµÈ¼ÛÓÚ£º|k|£¾$\frac{\sqrt{2}}{2}$£¬
·´Õý£¬µ±m¡¢kÂú×ã¢Û¼°|k|£¾$\frac{\sqrt{2}}{2}$ʱ£¬
Ö±Ïßl±Ø²»¾¹ýF1£¨-1£¬0£©£¨·ñÔò½«µ¼ÖÂm=k£¬Óë¢Ûì¶Ü£©£¬
¶ø´Ëʱm¡¢kÂú×ã¢Ú£¬´Ó¶øÖ±ÏßlÓëÍÖÔ²ÓÐÁ½¸ö²»Í¬µÄ½»µãA¡¢B£¬
ͬʱҲ±£Ö¤ÁËAF1¡¢BF1µÄбÂÊ´æÔÚ
£¨·ñÔòx1¡¢x2ÖеÄijһ¸öΪ-1£¬½áºÏx1+x2+2=0¿ÉÖªx1=x2=-1£¬
Óë·½³Ì¢ÙÓÐÁ½¸ö²»Í¬µÄʵ¸ùì¶Ü£©£¬
¼ÇµãF2£¨1£¬0£©µ½Ö±Ïßl£ºy=kx+mµÄ¾àÀëΪd£¬
Ôòd=$\frac{|k+m|}{\sqrt{1+{k}^{2}}}$=$\frac{1}{\sqrt{1+{k}^{2}}}$•|2k+$\frac{1}{2k}$|=$\frac{1}{\sqrt{1+\frac{1}{{k}^{2}}}}$•£¨2+$\frac{1}{2{k}^{2}}$£©£¬¢Ü
×¢Òâµ½|k|£¾$\frac{\sqrt{2}}{2}$£¬Áît=$\sqrt{1+\frac{1}{{k}^{2}}}$£¬Ôòt¡Ê£¨1£¬$\sqrt{3}$£©£¬
´Ó¶ø¢Üʽ¿É¸ÄдΪ£ºd=$\frac{1}{t}$•£¨$\frac{{t}^{2}}{2}$+$\frac{3}{2}$£©=$\frac{1}{2}$£¨t+$\frac{3}{t}$£©£¬¢Ý
¿¼Âǵ½º¯Êýf£¨t£©=$\frac{1}{2}$£¨t+$\frac{3}{t}$£©ÔÚ[1£¬$\sqrt{3}$]Éϵ¥µ÷µÝ¼õ£¬
¹ÊÓɢݿÉÖªf£¨$\sqrt{3}$£©£¼d£¼f£¨1£©£¬
¼´d¡Ê£¨$\sqrt{3}$£¬2£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÐÔÖʺÍÀëÐÄÂʹ«Ê½£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢µÈ²îÊýÁеÄÖÐÏîµÄÐÔÖÊ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{5}$ | B£® | $\frac{\sqrt{5}}{2}$ | C£® | $\sqrt{5}$+1 | D£® | $\frac{\sqrt{5}+1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 140 | B£® | 142 | C£® | 146 | D£® | 149 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{3}{4}$ | B£® | $\frac{3}{4}$ | C£® | $\frac{4}{3}$ | D£® | -$\frac{4}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com