精英家教网 > 高中数学 > 题目详情
设常数a≥0,函数f(x)=
2x+a
2x-a

(1)若a=4,求函数y=f(x)的反函数y=f-1(x);
(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.
考点:反函数,函数奇偶性的判断
专题:函数的性质及应用
分析:(1)根据反函数的定义,即可求出,
(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.
解答: 解:(1)∵a=4,
f(x)=
2x+4
2x-4
=y

2x=
4y+4
y-1

x=log2
4y+4
y-1

∴调换x,y的位置可得y=f-1(x)=log2
4x+4
x-1
,x∈(-∞,-1)∪(1,+∞).
(2)若f(x)为偶函数,则f(x)=f(-x)对任意x均成立,
2x+a
2x-a
=
2-x+a
2-x-a
,整理可得a(2x-2-x)=0.
∵2x-2-x不恒为0,
∴a=0,此时f(x)=1,x∈R,满足条件;
若f(x)为奇函数,则f(x)=-f(-x)对任意x均成立,
2x+a
2x-a
=-
2-x+a
2-x-a
,整理可得a2-1=0,
∴a=±1,
∵a≥0,
∴a=1,
此时f(x)=
2x+1
2x-1
,x≠0
,满足条件;
综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.
点评:本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为(  )
A、1B、3C、7D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F、P、Q、M、N分别是棱AB、AD、DD1、BB1、A1B1、A1D1的中点,求证:
(Ⅰ)直线BC1∥平面EFPQ;
(Ⅱ)直线AC1⊥平面PQMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1+(1+a)x-x2-x3,其中a>0.
(Ⅰ)讨论f(x)在其定义域上的单调性;
(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是
 
.(仰角θ为直线AP与平面ABC所成角)

查看答案和解析>>

科目:高中数学 来源: 题型:

分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=7,公差为d,前n项和为Sn,当且仅当n=8时Sn取得最大值,则d的取值范围为
 

查看答案和解析>>

同步练习册答案