精英家教网 > 高中数学 > 题目详情
设函数f(x)=1+(1+a)x-x2-x3,其中a>0.
(Ⅰ)讨论f(x)在其定义域上的单调性;
(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)利用导数判断函数的单调性即可;
(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.
解答: 解:(Ⅰ)f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2
由f′(x)=0,得x1=
-1-
4+3a
3
,x2=
-1+
4+3a
3
,x1<x2
∴由f′(x)<0得x<
-1-
4+3a
3
,x>
-1+
4+3a
3

由f′(x)>0得
-1-
4+3a
3
<x<
-1+
4+3a
3

故f(x)在(-∞,
-1-
4+3a
3
)和(
-1+
4+3a
3
,+∞)单调递减,
在(
-1-
4+3a
3
-1+
4+3a
3
)上单调递增;

(Ⅱ)∵a>0,∴x1<0,x2>0,
①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.
②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,
因此f(x)在x=x2=
-1+
4+3a
3
处取得最大值,又f(0)=1,f(1)=a,
∴当0<a<1时,f(x)在x=1处取得最小值;
当a=1时,f(x)在x=0和x=1处取得最小值;
当1<a<4时,f(x)在x=0处取得最小值.
点评:本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则(  )
A、p是q的充分必要条件
B、p是q的充分条件,但不是q的必要条件
C、p是q的必要条件,但不是q的充分条件
D、p既不是q的充分条件,也不是q的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.

查看答案和解析>>

科目:高中数学 来源: 题型:

某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10-
3
cos
π
12
t-sin
π
12
t
,t∈[0,24)
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:

设常数a≥0,函数f(x)=
2x+a
2x-a

(1)若a=4,求函数y=f(x)的反函数y=f-1(x);
(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°,以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=
 
m.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P为⊙O外一点,过P点作⊙O的两条切线,切点分别为A,B,过PA的中点Q作割线交⊙O于C,D两点,若QC=1,CD=3,则PB=
 

查看答案和解析>>

同步练习册答案