精英家教网 > 高中数学 > 题目详情
某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10-
3
cos
π
12
t-sin
π
12
t
,t∈[0,24)
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10-2sin(
π
12
t+
π
3
),t∈[0,24),利用正弦函数的定义域和值域求得f(x)的最大值及最小值,可得实验室这一天的最大温差.
(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin(
π
12
t+
π
3
)<-
1
2
,即
6
π
12
t+
π
3
11π
6
,解得t的范围,可得结论.
解答: 解:(Ⅰ)∵f(t)=10-
3
cos
π
12
t-sin
π
12
t
=10-2sin(
π
12
t+
π
3
),t∈[0,24),
π
3
π
12
t+
π
3
3
,故当
π
12
t+
π
3
=
2
时,及t=14时,函数取得最大值为10+2=12,
π
12
t+
π
3
=
π
2
时,即t=2时,函数取得最小值为10-2=8,
故实验室这一天的最大温差为12-8=4℃.
(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10-2sin(
π
12
t+
π
3
),
由10-2sin(
π
12
t+
π
3
)>11,求得sin(
π
12
t+
π
3
)<-
1
2
,即 
6
π
12
t+
π
3
11π
6

解得10<t<18,即在10时到18时,需要降温.
点评:本题主要考查函数y=Asin(ωx+φ)的图象特征,两角和差的正弦公式,正弦函数的定义域和值域,三角不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是(  )
表1
     成绩
性别
不及格及格总计
61420
102232
总计163652
表2
  视力
性别
总计
41620
122032
总计163652
表3
  智商
性别
偏高正常总计
81220
82432
总计163652
表4
  阅读量
性别
丰富不丰富总计
14620
23032
总计163652
A、成绩B、视力C、智商D、阅读量

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
3
an≤an+1≤3an,n∈N*,a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范围;
(2)若{an}是等比数列,且am=
1
1000
,求正整数m的最小值,以及m取最小值时相应{an}的公比;
(3)若a1,a2,…a100成等差数列,求数列a1,a2,…a100的公差的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.
(Ⅰ)证明:an+2-an
(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F、P、Q、M、N分别是棱AB、AD、DD1、BB1、A1B1、A1D1的中点,求证:
(Ⅰ)直线BC1∥平面EFPQ;
(Ⅱ)直线AC1⊥平面PQMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1+(1+a)x-x2-x3,其中a>0.
(Ⅰ)讨论f(x)在其定义域上的单调性;
(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为e1,e2,则e1•e2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=
 

查看答案和解析>>

同步练习册答案