精英家教网 > 高中数学 > 题目详情

【题目】如图,多面体中,平面,四边形是菱形.

(1)证明:平面平面

(2)若,设,求三棱锥的体积.

【答案】(1)见解析(2).

【解析】分析:(1)根据题的条件中平面,得到,根据菱形的性质得到,利用线面垂直的判定定理证得线面垂直,再应用面面垂直的判定定理证得面面垂直; (2)利用题的条件,求得相应的线段长,利用棱锥的体积公式求得结果.

详解:(1)证明:∵平面平面

∵四边形是菱形,

平面

平面

∴平面平面.

(2)解法一:过点

平面

平面

是三棱锥的高,

∵四边形是菱形,

是等边三角形,

得,

.

解法二:∵平面

平面

∵四边形是菱形,

是等边三角形,

到平面的距离为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型商场为了了解顾客的购物信息,随机在商场收集了位顾客的购物总额(单位元),将数据按照 分成组,制成了如下图所示的频率分布直方图:

该商场每日大约有名顾客,为了增加商场销售总额,近期对一次性购物不低于元的顾客发放纪念品.

(1)求频率分布直方图中的值,并估计每日应准备纪念品的数量;

(2)若每日按分层抽样的方法从购物总额在三组对应的顾客中抽取名顾客,这名顾客中再随机抽取两名超级顾客,每人奖励一个超级礼包,求获得超级礼包的两人来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}中, S2=16,且成等比数列.

(1)求数列{an}的通项公式;

(2)求数列{|an|}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若变量x,y满足约束条件 ,且z=ax+3y的最小值为7,则a的值为(
A.1
B.2
C.﹣2
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。

(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;

(2)令,若对任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为.现有件产品,其中件是一等品, 件是二等品.

(Ⅰ)随机选取件产品,设至少有一件通过检测为事件,求事件的概率;

(Ⅱ)随机选取件产品,其中一等品的件数记为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).

附参考公式:回归方程中最小二乘估计分别为

,相关系数

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点,且,线段交圆的交点为点关于轴的对称点.

(1)求直线的方程;

(2)已知是圆上不同的两点,且,试证明直线的斜率为定值,并求出该定值.

查看答案和解析>>

同步练习册答案