精英家教网 > 高中数学 > 题目详情
已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:
(1);(2)详见解析.

试题分析:(1)欲求a的值,根据在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.再列出一个等式,最后解方程组即可得.
(2)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,最后求出极值即可.
(3)由(2)知,当a=1时,函数f(x)=,在[1,+∞)上是单调减函数,且f(1)==1,从而证得结论..
试题解析:解:(1)函数
所以又曲线处的切线与直线平行,所以             4分;
(2)令
当x变化时,的变化情况如下表:





+
0



极大值

由表可知:的单调递增区间是,单调递减区间是
所以处取得极大值,       8分;
(3)当由于
只需证明

因为,所以上单调递增,
成立。
故当时,有          12分;
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且
(1)求的值;
(2)求函数的单调区间;
(3)设函数,若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)试判断函数的单调性,并说明理由;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3+ax2+3x﹣9,已知f(x)在x=﹣3时取得极值,则a=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=f(x)在定义域(-,3)内的图像如图所示.记y=f(x)的导函数为y=f¢(x),则不等式f¢(x)≤0的解集为(   )
A.[-,1]∪[2,3)B.[-1,]∪[]
C.[-]∪[1,2)D.(-,- ]∪[]∪[,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数有两个极值点,且,,则( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,函数,若上是单调减函数,则的取值范围是
A.B.C.D.

查看答案和解析>>

同步练习册答案