精英家教网 > 高中数学 > 题目详情

【题目】图(1)是某条公共汽车线路收支差额y关于乘客量x的图象.

1)试说明图(1)上点A,点B以及射线AB上的点的实际意义;

2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图(2)(3)所示,你能根据图象,说明这两种建议是什么吗?

【答案】1)点A见解析,点B见解析,射线AB见解析;(2)两种建议见解析

【解析】

1)观察函数图象可知,函数的横坐标表示乘客量,纵坐标表示收支差额,即可得出结论.

2)观察函数图象可知,函数的横坐标表示乘客量,纵坐标表示收支差额,根据图象,即可得出合理的建立.

解:(1)点A的实际意义为:当乘客量为0时,公司亏损1(单位);点B的实际意义为:当乘客量为1.5时,公司收支持平;

射线AB上的点的实际意义为:当乘客量小于1.5时,公司将亏损;当乘客量大于1.5时,公司将赢利.

2)题图(2)的建议是:降低成本而保持票价不变;题图(3)的建议是:提高票价而保持成本不变.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果:

(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;

(2)完成联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”.

附:,其中nabcd为样本容量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,沿翻折到的位置,使平面平面.

(1)求证: 平面

(2)若在线段上有一点满足,且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4,坐标系与参数方程】

在直角坐标系中,直线的参数方程为t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

)求直线的普通方程与曲线C的直角坐标方程;

)若直线轴的交点为P,直线与曲线C的交点为A,B,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆O的直径,点C是圆O上异于AB的点,直线平面EF分别是的中点.

1)记平面与平面的交线为l,试判断直线l与平面的位置关系,并加以证明;

2)设,求二面角大小的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,错误的是( )

A. 若命题,则命题

B. ”是“”的必要不充分条件

C. “若,则中至少有一个不小于”的逆否命题是真命题

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的方程x2﹣ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4[3+∞)上是增函数,若“pq”是真命题,“pq”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角所对的边为,则下列命题正确的是_____

①若,则 ②若

③若,则 ④若,则

查看答案和解析>>

同步练习册答案