精英家教网 > 高中数学 > 题目详情
5.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包,称其质量,分别记下抽查记录如表(单位:千克):
52514948534849
60654035256560
(1)这种抽样方法是哪一种抽样方法?
(2)画出茎叶图,并说明哪个车间的产品比较稳定.

分析 (1)每隔30分钟抽取一包产品,等间隔抽取,属于系统抽样.
(2)以十位为茎,个位为叶,画出茎叶图.并从叶子形状做出比较.

解答 解(1)由于是每隔30分钟抽取一包产品,是等间隔抽取,属于系统抽样.
(2)以十位为茎,个位为叶,画出茎叶图:

甲车间数据集中于峰值附近,比较稳定.

点评 本题考查了茎叶图的基本知识,要求会画、会用茎叶图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知点M是直线l:y=$\sqrt{3}$x-4与y轴的交点,把直线l绕点M逆时针旋转60°,求所得直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良101-150为轻度污染;151-200为中度污染;201~300为重度污染;>300为严重污染.
一环保人士记录去年某地某月10天的AQI的茎叶图如图.
(Ⅰ)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天)
(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在长方体ABCD-A1B1C1D1中,已知AD=AA1=1,AB=2,点E是AB的中点.
(1)求三棱锥C-DD1E的体积;
(2)求证:D1E⊥A1D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若sinα=$\frac{3}{5}$且α是第二象限角,则$cot({\frac{α}{2}-\frac{π}{4}})$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,已知an=11-2n,则使前n项和Sn最大的n值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.水是最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分.为了推动对水资源进行综合性统筹规划和管理,加强水资源保护,解决日益严峻的淡水缺乏问题,开展广泛的宣传以提高公众对开发和保护水资源的认识.中国水利部确定每年的3月22日至28日为“中国水周”,以提倡市民节约用水.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.
(Ⅰ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计该地家庭的平均用水量;
(Ⅱ)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;
(Ⅲ)用X表示在未来3个月里用水量低于12吨的月数,求随机变量X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于函数f(x)=|sinx|+|cosx|(x∈R),有如下结论:
①函数f(x)的周期是$\frac{π}{2}$;
②函数f(x)的值域是[0,$\sqrt{2}$];
③函数f(x)的图象关于直线x=$\frac{3π}{4}$对称;
④函数f(x)在($\frac{π}{2}$,$\frac{3π}{4}$)上递增.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,扇形OAB的中心角为直角,半径为1,点P为扇形OAB的弧$\widehat{AB}$上任意一点,设$\overrightarrow{OP}$=x$\overrightarrow{OB}$+y$\overrightarrow{OA}$(x,y∈R),$\overrightarrow a$=(x,y),$\overrightarrow b$=(${\sqrt{3}$,1),则$\overrightarrow a•\overrightarrow b$的最小值为(  )
A.-1B.-2C.1D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案