精英家教网 > 高中数学 > 题目详情
12.已知i是虚数单位,复数Z=$\frac{4+2i}{1-i}$,则复数 $\overline Z$的虚部是(  )
A.-3B.3C.-3iD.3i

分析 利用复数代数形式的乘除运算化简,求出$\overline{Z}$得答案.

解答 解:∵Z=$\frac{4+2i}{1-i}$=$\frac{(4+2i)(1+i)}{(1-i)(1+i)}=\frac{2+6i}{2}=1+3i$,
∴$\overline{Z}=1-3i$,
则复数 $\overline Z$的虚部是-3.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求下列函数的导数:
(1)y=exlnx;                                
(2)y=$\frac{1+cosx}{sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}}$,b=log${\;}_{\frac{1}{3}}}$2,c=log23,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(3,4),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是(  )
A.[$\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]∪[3,+∞)C.(-∞,0]∪[$\frac{1}{2}$,3)D.[$\frac{1}{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cosA-acosC=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是定义在[-3,3]上的奇函数,当x∈[0,3]时,f(x)=log2(x+1).设函数g(x)=x2-2x+m,x∈[-3,3].如果对于?x1∈[-3,3],?x2∈[-3,3],使得g(x2)=f(x1),则实数m的取值范围为(  )
A.[-13,-1]B.(-∞,-1]C.[-13,+∞)D.[1,13]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.前不久商丘市因环境污染严重被环保部约谈后,商丘市近期加大环境治理力度,如表提供了商丘某企业节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
x3456
y2.5344.5
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;
(Ⅱ)已知该企业技改前100吨甲产品的生产能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.现对一个生产茶杯的工厂的日产量进行统计,下面是50天的统计结果(单位:个)
日产量222527
频数1035a
(1)根据上表的数据,求一天的产量分别为22个,25个和27个的频率;
(2)假设工厂各天的茶杯产量相互独立,每个茶杯的成本为10元,且每天生产的茶杯均能以每个20元销售完.若以上述频率作为概率,ξ表示该工厂两天生产的茶杯的利润和(单位:元),求ξ的分布列;
(3)若该工厂两天生产的茶杯的利润和的期望值超过480元,则可被评为先进单位.请估计该工厂能否被评为先进单位?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1与曲线$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{16-k}$=1 (k<16)有相同的(  )
A.顶点B.长轴长C.离心率D.焦点

查看答案和解析>>

同步练习册答案