精英家教网 > 高中数学 > 题目详情
18.给出下列命题,其中错误命题的个数为(  )
(1)直线a与平面α不平行,则a与平面α内的所有直线都不平行;
(2)直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;
(3)异面直线a、b不垂直,则过a的任何平面与b都不垂直;
(4)若直线a和b共面,直线b和c共面,则a和c共面.
A.1B.2C.3D.4

分析 由线面的位置关系,即可判断(1)、(2);假设过a的平面与b垂直,由线面垂直的性质定理即可判断(3);
由空间直线和直线的位置关系,即可判断(4).

解答 解:对于(1),直线a与平面α不平行,若直线在平面α内,则a与平面α内的无数条直线都平行,故(1)错;
对于(2),直线a与平面α不垂直,若a与平面α平行,则a与平面α内的无数条直线垂直,故(2)错;
对于(3),假设过a的平面与b垂直,即有b垂直于a,与异面直线a、b不垂直矛盾,故(3)对;
对于(4),若直线a和b共面,直线b和c共面,则a和c相交、平行或异面.故(4)错.
综上可得,错误的个数为3.
故选C.

点评 本题考查空间直线和直线以及直线和平面的位置关系的判断,熟记线面平行和垂直的判定定理和性质定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数y=$\frac{{x}^{2}-5x+a}{x-2}$(x>2,a>6)的最小值是5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在△ABC中,a=3,c=2,∠B=150°,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$,经过点A(0,3)的直线与椭圆交于P,Q两点.
(Ⅰ)若|PO|=|PA|,求点P的坐标;
(Ⅱ)若S△OAP=S△OPQ,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l:y=kx+4,椭圆C:$\frac{x^2}{5}+{y^2}$=1.
(Ⅰ)若直线l过C的左焦点,求实数k值.
(Ⅱ)若直线l与椭圆C有公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,P是以F1F为直径的圆与该椭圆的一个交点,且∠PF1F2=2∠PF2F1,则这个椭圆的离心率是(  )
A.$\sqrt{3}$-1B.2-$\sqrt{3}$C.$\frac{\sqrt{3}-1}{2}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}的前n项和为sn,a1=λ,且当n为奇数时,an+1=an+2,当n为偶数时,an+1=Sn.若bn=a2n-1+1,判断数列{bn}是否为等比数列,若是,求该数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$离心率e=$\frac{\sqrt{2}}{2}$,短轴长为2$\sqrt{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知不等式 $1+\frac{1}{4}<\frac{3}{2},1+\frac{1}{4}+\frac{1}{9}<\frac{5}{3},1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}<\frac{7}{4},…$,照此规律,总结出第 n(n∈N*)个不等式为1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{(n+1)^{2}}$<$\frac{2n+1}{n+1}$.

查看答案和解析>>

同步练习册答案