精英家教网 > 高中数学 > 题目详情
10.数列{an}的前n项和为sn,a1=λ,且当n为奇数时,an+1=an+2,当n为偶数时,an+1=Sn.若bn=a2n-1+1,判断数列{bn}是否为等比数列,若是,求该数列的前n项和.

分析 根据数列的递推关系构造等比数列{a2n+1+1},结合等比数列的定义和性质进行求解即可.

解答 解:∵a1=λ,∴a2=a1+2=λ+2,
则a2n=a2n-1+1=a2n-1+2,
a2n+2=a2n+1+2,
a2n+1=S2n
a3=S2=a1+a2=2λ+2,
a2n+3=S2n+2
∴a2n+3-a2n+1=S2n+2-S2n=a2n+2+a2n+1
即a2n+3=a2n+2+2a2n+1=a2n+1+2+2a2n+1=3a2n+1+2,
即a2n+3+1=3(a2n+1+1),
即{a2n+1+1}是首项为a3+1=2λ+3,公比为3的等比数列.
即bn+1=(2λ+3)3n-1
b2=a3+1=2λ+3,
b1=a1+1=1+λ,
只有当a3+1=3(a1+1),
即2λ+3=3(λ+1)时,
即λ=0时,数列{bn}是才是等比数列.

点评 本题主要考查数列的递推关系的应用,构造等比数列是解决本题的关键.综合性较强运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图所示,P1(x1,y1)、P2(x2,y2),…Pn(xn,yn)在函数y=$\frac{4}{x}$(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3…△PnAn-1An…都是等腰直角三角形,斜边OA1,A1A2…An-1An,都在x轴上,则y1+y2+…y10=$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}a{x^3}+({a-2})x+c$的图象如图所示.
(1)求函数y=f(x)的解析式;
(2)已知f′(x)是函数f(x)的导函数.?若数列{an}的通项${a_n}=\frac{1}{{f'({n+1})}}$,求其前n项和Sn;?若$g(x)=\frac{kf'(x)}{x}-2lnx$在其定义域内为增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列命题,其中错误命题的个数为(  )
(1)直线a与平面α不平行,则a与平面α内的所有直线都不平行;
(2)直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;
(3)异面直线a、b不垂直,则过a的任何平面与b都不垂直;
(4)若直线a和b共面,直线b和c共面,则a和c共面.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆x2+3y2=9的左焦点为F1,点P是椭圆上异于顶点的任意一点,O为坐标原点.若点D是线段PF1的中点,则△F1OD的周长为(  )
A.1+$\frac{{\sqrt{6}}}{3}$B.3+$\sqrt{6}$C.3+2$\sqrt{3}$D.6+2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式为an=3n-$\frac{1}{2}$,求证:$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+$\frac{3}{{a}_{3}}$+…+$\frac{n}{{a}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等比数列{an}中,a3a5+2a4a6+a5a7=49,则a4+a6=(  )
A.14B.±7C.7D.-14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知在平面直角坐标系中,角θ满足sin$\frac{θ}{2}$=-$\frac{3}{5}$,cos$\frac{θ}{2}$=$\frac{4}{5}$,$\overrightarrow{OA}$=(0,1),点B是角θ终边上一点,且|$\overrightarrow{OB}$|=1,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,且x+y=1,则|$\overrightarrow{OP}$|的最小值是$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,已知A=30°,b=18,分别根据下列条件求B.
(1)①a=6;②a=9;③a=13;④a=18;⑤a=22;
(2)根据上述计算结果,讨论使B有一解,两解,无解时a的取值情况.

查看答案和解析>>

同步练习册答案