精英家教网 > 高中数学 > 题目详情
已知公比为整数的等比数列{an}中,a1=1,a3=2a2+3,在等差数列{bn}中,公差d=2,且b1+b2+b3=15.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Sn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设q为等比数列{an}的公比,依题意,可求得q=3,从而可得数列{an}的通项公式;由等差数列{bn}的公差d=2,且b1+b2+b3=15,可求得{bn}的通项公式;
(Ⅱ)由( I)知Sn=3×1+5×3+7×32+…+(2n-1)×3n-2+(2n+1)×3n-1,3Sn=3×3+5×32+7×33+…+(2n-1)×3n-1+(2n+1)×3n,利用错位相减法即可求得数列{an•bn}的前n项和Sn
解答: 解:( I)设q为等比数列{an}的公比,则由a1=1,a3=2a2+3,
得q2=2q+3,解得q=3或q=-1(舍去).…(2分)
∴{an}的通项公式为an=a1qn-1=3n-1.…(3分)
∵b1+b2+b3=15,∴b2=5,又d=2,∴b1=b2-d=3.…(5分)
∴bn=3+2(n-1)=2n+1.…(7分)
( II)由( I)知Sn=3×1+5×3+7×32+…+(2n-1)×3n-2+(2n+1)×3n-1
∴3Sn=3×3+5×32+7×33+…+(2n-1)×3n-1+(2n+1)×3n
∴①-②得-2Sn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n
=3+2(3+32+33+…+3n-1)-(2n+1)×3n
=3+2×
3(1-3n-1)
1-3
-(2n+1)×3n

=-2n•3n…(11分)
Sn=n•3n.…(12分)
点评:本题考查等差数列与等比数列的通项公式及其应用,突出考查错位相减法求数列的和,考查等价转化思想与运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,a1=1,an=
Sn
n
+2(n-1),(n∈N*),若S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2=2015,则n的值为(  )
A、1008B、1007
C、2014D、2015

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
16
-
y2
9
=1上一点P,F1,F2是焦点,若|PF1|=10,则|PF2|等于(  )
A、2B、2或18C、18D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SO⊥平面ABCD,O为垂足,点M在SO上,且SM:MO=2:1,经过点M作与底面ABCD平行的平面α,分别交棱SA、SB、SC、SD于A1、B1、C1、D1
(1)求证:四边形A1B1C1D1∽四边形ABCD;
(2)求棱锥S-A1B1C1D1的体积与棱台A1B1C1D1-ABCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(x+
π
8
),sin2(x+
π
8
)),
b
=(sin(x+
π
8
),1),函数f(x)=2
a
b
-1.
(Ⅰ)求函数f(x)的解析式,并写出函数f(x)的周期与对称中心坐标;
(Ⅱ)求函数y=f(-
1
2
x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+xlnx,且图象在点(
1
e
,f(
1
e
))处的切线斜率为1(e为自然对数的底数).
(Ⅰ)求实数a的值;
(Ⅱ)设g(x)=
f(x)-x
x-1
,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△AOB,∠AOB=
π
2
,∠BAO=
π
6
,AB=4,D为线段AB的中点.若△AOC是△AOB绕直线AO旋转而成的.记OB绕O旋转所成角∠BOC为θ.
(1)当平面COD⊥平面AOB时,证明:OC⊥OB;
(2)若θ∈[
π
2
3
],求三棱锥C-AOB的体积V的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx+sin2x-
3
2
,将函数f(x)的图象向左平移
π
6
个单位,得到函数g(x)的图象,设△ABC得三个角A,B,C的对边分别是a,b,c
(1)若f(C)=0,c=
6
,2sinA=sinB,求a,b的值;
(2)若g(B)=0,且
m
=(cosA,cosB),
n
=(1,sinA-cosAtanB),求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=1-
1
4an
,其中n∈N*
(1)设bn=
2
2an-1
,求证:数列{bn}是等差数列;
(2)若cn=6n+(-1)n-1λ•2 bn是否存在λ,使得对任意n∈N+,都有cn+1>cn,若存在,求出λ的取值范围;若不存在,说明理由;
(3)证明::对一切正整数n,有
1
b1(b1+1)
+
1
b2(b2+1)
+…+
1
bn(bn+1)
13
42

查看答案和解析>>

同步练习册答案