精英家教网 > 高中数学 > 题目详情
(本题共10分)
将两块三角板按图甲方式拼好,其中

,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅰ)见解析;(Ⅱ)
夹角此类问题的关键是熟悉几何体的结构题中,不但利用题中的线面关系夹角平行、垂直、空间角等问题,也可以建立适当的坐标系借助与向量解决以上问题
(1)在平面内找两条相交直线,再分别证明这两条直线与已知直线垂直,即可利用线面垂直的判定定理得到得到线面垂直.
(2)利用题中的垂直关系作出二面角的平面角,再证明此角是所求角,然后放入三角形中利用解三角形的有关知识求解答案即可.
解:(1)设的射影为,则平面
, 又平面   
,又平面        ……………………4分
(2)由(1),又 中点
轴,轴,过且与平行的直线为轴建系,则

为平面的法向量,由,可得
易知为平面的法向量,
因为所求二面角是锐角,所以所求二面角的余弦值为。…………………10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。用反证法证明:直线ME 与 BN 是两条异面直线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在三棱柱中,侧面底面,,,且中点.

(I)证明:平面;
(II)求直线与平面所成角的正弦值;
(III)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在边长为的正三角形中,分别为上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结.(如图2)
 
(Ⅰ)求证:⊥平面
(Ⅱ)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)如图三棱锥中,,平面平面
(1) 求证:;                   
(2) 求直线和面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点P、Q、R、S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是 ( )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直角三角形ABC的直角边AB在平面α内,顶点Cα外,且Cα内的射影为C1C1不在AB上),则△ABC1
A.直角三角形B.锐角三角形C.钝角三角形D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两条不同的直线,是两个不同的平面,
有下列四个命题:
①若  ;
,则
③若
④若
其中正确的命题是      .(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平面给出下列四个命题:
①若②若
③若④若
其中真命题是(   )
A.①②B.①③C.①④D.②④

查看答案和解析>>

同步练习册答案