精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1的棱长为2,线段EF在棱A1B1上移动,点P,Q分别在棱AD,CD上移动,若EF=1,PD=x,A1E=y,CQ=z,则三棱锥Q-PEF的体积(  )
分析:四面体PEFQ的体积,找出三角形△EFQ面积是不变量,P到平面的距离是变化的,从而确定选项.
解答:解:由题意可以分析出,三棱锥Q-PEF的体积即是三棱锥P-EFQ的体积
而△EFQ的面积永远不变,为面A1B1CD面积的
1
4


而当P点变化时,它到面A1B1CD的距离是变化的,因此会导致四面体体积的变化.
故答案为 A.
点评:本题考查棱锥的体积,在变化中寻找不变量,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案