精英家教网 > 高中数学 > 题目详情
1.已知θ的终边过点P(-12,5),则cosθ=$-\frac{12}{13}$.

分析 先求出θ的终边上点P(-12,5)到原点的距离为r,再利用任意角的三角函数的定义求出结果.

解答 解:∵θ的终边过点P(-12,5),
∴x=-12,y=5,∴r=13,
由任意角的三角函数的定义得cosα=$\frac{x}{r}$=-$-\frac{12}{13}$.
故答案为:$-\frac{12}{13}$.

点评 本题考查任意角的三角函数的定义,两点间的距离公式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,在边长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在底面ABCD上移动,且满足B1P⊥D1E,则线段B1P的长度的最大值为(  )
A.$\frac{{4\sqrt{5}}}{5}$B.2C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点E在△ABC的外接圆O上,AB=AC,$\widehat{AE}$=$\widehat{CE}$,AC交BE于点D,圆O的面积为S.
(1)证明:$\frac{AB}{BD}$=$\frac{BE}{BC}$;
(2)若△ABC的面积S1=$\frac{\sqrt{3}}{4}$BD•BE,证明:$\frac{S}{{S}_{1}}$=$\frac{4\sqrt{3}π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\sqrt{1-x}$+lg(3x+1)的定义域是(  )
A.$(-\frac{1}{3},+∞)$B.$(-\frac{1}{3},1)$C.$(-\frac{1}{3},1]$D.$(\frac{1}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知动点P到定点F(p,0)和到直线x=-p(p>0)的距离相等.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)经过点F的直线l交(Ⅰ)中轨迹C于A、B两点,点D在抛物线的准线上,且BD∥x轴.证明直线AD经过原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0 时,有$\frac{f(m)+f(n)}{m+n}>0$.
(1)求证:f(x)在[-1,1]上为增函数;
(2)求不等式$f(x+\frac{1}{2})<f(1-x)$的解集;
(3)若$f(x)≤{t^2}+t-\frac{1}{{{{cos}^2}α}}-2tanα-1$对所有$x∈[-1,1],α∈[-\frac{π}{3},\frac{π}{4}]$恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,高为3的直三棱柱ABC-A1B1C1中,底面是直角三角形,AC=2,D为A1C1的中点,F在线段AA1上,CF⊥DB1,且A1F=1.
(1)求证:CF⊥平面B1DF;
(2)求平面B1FC与平面AFC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正方体ABCD-A1B1C1D1的棱长为1,M为棱CC1的中点,则点M到平面A1BD的距离是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b∈R,且ab≠0,那么“a>b”是“lg(a-b)>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案