精英家教网 > 高中数学 > 题目详情
16.已知g(x)在[-1,1]上为减函数,且g(x)=λx+sinx,若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.

分析 利用g′(x)=λ+cosx≤0在[-1,1]上恒成立,得出λ≤-cosx,再结合三角函数的性质即可求λ的取值范围.在利用函数g(x)在[-1,1]上单调递减,求出其最大值,把g(x)≤t2-λt+1在x∈[-1,1]上恒成立转化为其最大值小于等于t2-λt+1恒成立,进而得到(1-t)λ+t2+sin1+1≥0(其中λ≤-1)恒成立,再利用一次函数恒成立问题的解法即可求t出的取值范围.

解答 解:∵g(x)=λx+sinx是区间[-1,1]上的减函数,
∴g′(x)=λ+cosx≤0在[-1,1]上恒成立,
∴λ≤-cosx.
又∵cosx∈[cos1,1],
∴-cosx∈[-1,-cos1].
∴λ≤-1.
∵g(x)在区间[-1,1]上单调递减,
函数g(x)≤t2+λt+1在x∈[-1,1]上恒成立,
∴g(x)max=g(-1)=-λ-sin1≤t2+λt+1恒成立.
∴(t+1)λ+t2+sin1+1≥0(λ≤-1)恒成立.
令h(λ)=(t+1)λ+t2+sin1+1,
则$\left\{\begin{array}{l}{t+1≤0}\\{-t-1+{t}^{2}+sin1+1≥0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{t≤-1}\\{{t}^{2}-t+sin1≥0}\end{array}\right.$,而t2-t+sin1≥0恒成立,
∴t≤-1.

点评 本题主要考查函数单调性及函数恒成立问题.一次函数的恒成立问题一般要考虑一次项系数的符号及区间端点值的符号,该题属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,其中x,y∈R,且2x+y=4,$\overrightarrow{d}$为非零向量,则|$\frac{\overrightarrow{d}}{|\overrightarrow{d}|}$-$\overrightarrow{c}$|的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知递增的等差数列{an}(n∈N*)的前三项之和为18,前三项之积为120.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若点A1(a1,b1),A2(a2,b2),…,An(an,bn)(n∈N*)从左至右依次都在函数y=3${\;}^{\frac{x}{2}}$的图象上,求这n个点A1,A2,A3,…,An的纵坐标之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数z=(1+i)(1-2i)(i为虚数单位),则z的实部为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,B1C⊥AB,侧面BCC1B1为菱形.
(1)求证:平面ABC1⊥平面BCC1B1
(2)如果点D,E分别为A1C1,BB1的中点,求证:DE∥平面ABC1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某几何体的三视图(单位:cm)如图所示,则此几何体的体积是7cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若(1-3x)2015=a0+a1x+a2x2+…+a2015x2015,则$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{9}$+…+$\frac{{a}_{2015}}{{3}^{2015}}$的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个多面体的直观图及三视图如图所示(其中M、N分别是AF、BC的中点).
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求平面ADE与平面NMF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案