精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.4B.3C.2D.1

分析 由模长公式可得|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$,代入已知数据计算可得.

解答 解:∵向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,
∴|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}-2\overrightarrow{b})^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$
=$\sqrt{{2}^{2}-4×2×1×\frac{1}{2}+4×{1}^{2}}$=2
故选:C

点评 本题考查向量的模长和夹角,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知g(x)在[-1,1]上为减函数,且g(x)=λx+sinx,若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{1}{2}$cos2x+$\sqrt{3}$sinx•cosx,则f(x)的最小正周期是π,f(x)的单调增区间是(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数a,b满足1≤a+b≤3且-1≤a-b≤1,则4a+2b的取值范围为[2,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x|y=lg$\frac{2-x}{x}$},N={x|x<1},则 M∩∁RN=(  )
A.(0,2]B.(0,2)C.[1,2)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知二项式${(2x-\frac{1}{x})^n}$展开式中二项式系数最大的是第4项,则展开式中的常数项为-160(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.梯形ABCD中,AB=$\frac{1}{2}$CD,AB∥CD,点P为梯形所在平面内一点,满足:$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{AB}$+$\overrightarrow{CD}$,若△ABC的面积为1,则△PCD的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,△ABC是边长为1的正三角形,以A为圆心,AC为半径,沿逆时针方向画圆弧,交BA延长线于A1,记弧CA1的长为l1;以B为圆心,BA1为半径,沿逆时针方向画圆弧,交CB延长线于A2,记弧A1A2的长为l2;以C为圆心,CA2为半径,沿逆时针方向画圆弧,交AC延长线于A3,记弧A2A3的长为l3,则l1+l2+l3=4π.如此继续以A为圆心,AA3为半径,沿逆时针方向画圆弧,交AA1延长线于A4,记弧A3A4的长为l4,…,当弧长ln=8π时,n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-x2+x.
(I)求函数f(x)的单调递减区间;
(Ⅱ)若关于x的不等式f(x)≤($\frac{a}{2}$-1)x2+ax-1恒成立,求整数a的最小值;
(Ⅲ)若正实数x1,x2满足f(x1)+f(x2)+2(x${\;}_{1}^{2}$+x${\;}_{2}^{2}$)+x1x2=0,证明x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步练习册答案