精英家教网 > 高中数学 > 题目详情
1.如图,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.

分析 由∠B=75°,∠C=45°,利用三角形内角和求出∠BAC.又AE平分∠BAC,求出∠BAE、∠CAE.再利用AD是BC上的高在△ABD中求出∠BAD,此时就可以求出∠DAE.最后利用三角形的外角和内角的关系可以求出∠AEC.

解答 解:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,
∴∠BAC=60°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=$\frac{1}{2}$∠BAC=$\frac{1}{2}$×60°=30°,
∵AD是BC上的高,
∴∠B+∠BAD=90°,
∴∠BAD=90°-∠B=90°-75°=15°,
∴∠DAE=∠BAE-∠BAD=30°-15°=15°,
在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°.

点评 此题主要考查了三角形的内角,外角以及和它们相关的一些结论,图形比较复杂,对于学生的视图能力要求比较高.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{2x}{lnx}$.
(1)求曲线y=f(x)与直线2x+y=0垂直的切线方程;
(2)求f(x)的单调递减区间;
(3)若存在x0∈[e,+∞),使函数g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,$AC=2,A=\frac{2π}{3},\sqrt{3}cosC=3sinB$.
(1)求AB;
(2)若D为BC边上一点,且△ACD的面积为$\frac{{3\sqrt{3}}}{4}$,求∠ADC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,向量$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$所对应的复数分别为Z1,Z2,则Z1•Z2=(  )
A.4+2iB.2+iC.2+2iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将函数$f(x)=3sin(2x+\frac{π}{3})$的图象向左平移$\frac{π}{6}$个单位,在向上平移1个单位,得到g(x)的图象,若g(x1)g(2)=16,且${x_1},{x_2}∈[-\frac{3π}{2},\frac{3π}{2}]$,则2x1-x2的最大值为(  )
A.$\frac{23}{12}π$B.$\frac{35}{12}π$C.$\frac{19}{6}π$D.$\frac{59}{12}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a>0,b>0,若$\sqrt{2}$是2a与2b的等比中项,求a2+2b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=3ax2-2(a+b)x+b,a>0,b∈R,0≤x≤1.
(1)若fmax(x)=1,求a2+|b|的取值范围;
(2)求证:|f(x)|≤$\frac{1}{2}$(|a-2b|+a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2bcosA.
(1)求角B的大小;
(2)若a=2,b=$\sqrt{7}$,求c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={x|(x-1)(x+2)<0},N={x∈Z||x|≤2},则M∩N=(  )
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

同步练习册答案