精英家教网 > 高中数学 > 题目详情
用适当的方法表示下列集合:
(1)直角坐标系中横坐标为1的点的集合;
(2)满足不等式1<1+3x<26的奇数组成的集合.
考点:集合的表示法
专题:集合
分析:根据集合的表示法,根据题意描述即可.
解答: 解:(1){(x,y)|x=1,y∈R},
(2)∵1<1+3x<26,
解得0<x<
25
3

∵x为奇数,
∴x=1,3,5,7,
∴满足不等式1<1+3x<26的奇数组成的集合为{1,3,5,7}
点评:此题是个基础题.本题考查描述法表示集合,抓住描述法的特征表示即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O是△ABC内一点,且
OA
+3
OB
+3
OC
=
0
,则△ABC的面积与△BOC的面积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=
f(b)-f(a)
b-a
,f(x)=f′(x2)=
f(b)-f(a)
b-a
,则称数x1,x2为[a,b]上的“对望数”,函数f(x)为[a,b]上的“对望函数”.已知函数f(x)=
1
3
x3-x2+m是[0.m]上的“对望函数”,则实数m的取值范围是(  )
A、(1,
3
2
B、(
3
2
,3)
C、(1,2)∪(2,3)
D、(1,
3
2
)∪(
3
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x满足4x=8,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|log22x|+|log2x|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足z(3-4i)=5,则z的虚部为(  )
A、-
4
5
B、
4
5
C、-4
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD,AB∥DC,ADEF是正方形,已知BD=2AD=2,AB=2DC=
5

(1)证明:平面BDF⊥平面ADEF;
(2)在线段EF上是否存在一点G,使得CG∥平面BDF,若存在,求出FG的长度,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA=CA,PA⊥底面ABCD,E,F,分别为PD,PC的中点,且底面ABCD中,∠ABC,∠ACD都为直角,∠BAC,∠CAD的大小都为60°.
(1)求证:CE∥平面PAB;
(2)求证:平面PCD⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,
其中成绩分组间是:[80,90),[90,100),[100,110),[110,120]
(1)求实数a的值并求这36名学生成绩的样本平均数
.
x
(同一组中的数据用该组的中点值作代表);
(2)已知数学成绩为120分有4位同学,从这4位同学中任选两位同学,再从数学成绩在[80,90)中任选以为同学组成“二帮一”小组,已知甲同学的成绩为81分,乙同学的成绩为120分,求甲、乙两同学恰好被安排在同一个“二帮一”小组的概率.

查看答案和解析>>

同步练习册答案