分析 (1)设P(x,y),由题意得$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=m,(m>0),由此能求出结果.
(2)当m=$\frac{\sqrt{2}}{2}$时,曲线C:(x-3)2+y2=8,设直线AP:y-2=k(x-1),P(x1,y1),则直线AQ:y-2=-k(x-1),联立$\left\{\begin{array}{l}{y=kx+2-k}\\{(x-3)^{2}+{y}^{2}=8}\end{array}\right.$,得(1+k2)x2+(-2k2+4k-6)x+k2-4k+5=0,由此利用韦过定理、直线方程能求出直线PQ的斜率.
解答 解:(1)设P(x,y),由题意得$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=m,(m>0),
即|PF1|=m|PF2|,∴$\sqrt{(x-1)^{2}+{y}^{2}}$=m$\sqrt{(x+1)^{2}+{y}^{2}}$,
∴(m2-1)(x2+y2)+2(m2+1)x+m2-1=0,
当m=1时,点P的轨迹方程为x=0,表示y轴.
当m≠1时,点M的轨迹方程为${x}^{2}+{y}^{2}+2(\frac{{m}^{2}+1}{{m}^{2}-1})x+1=0$,
即(x+$\frac{{m}^{2}+1}{{m}^{2}-1}$)2+y2=$\frac{4{m}^{2}}{({m}^{2}-1)^{2}}$,
表示圆心为(-$\frac{{m}^{2}+1}{{m}^{2}-1}$,0),半径为$\frac{2m}{|{m}^{2}-1|}$的圆.
(2)当m=$\frac{\sqrt{2}}{2}$时,由(1)得曲线C:(x-3)2+y2=8,
设直线AP:y-2=k(x-1),P(x1,y1),则直线AQ:y-2=-k(x-1),Q(x2,y2),
联立$\left\{\begin{array}{l}{y=kx+2-k}\\{(x-3)^{2}+{y}^{2}=8}\end{array}\right.$,得(1+k2)x2+(-2k2+4k-6)x+k2-4k+5=0,
∴x1•1=$\frac{{k}^{2}-4k+5}{1+{k}^{2}}$,即${x}_{1}=\frac{{k}^{2}-4k+5}{1+{k}^{2}}$,
此时y1=kx1+2-k,
同理,${x}_{2}=\frac{{k}^{2}+4k+5}{1+{k}^{2}}$,y2=-kx2+2+k,
∴kPQ=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{(-k{x}_{2}+2+k)-(k{x}_{1}+2-k)}{{x}_{2}-{x}_{1}}$=$\frac{-k({x}_{1}+{x}_{2})+2k}{{x}_{2}-{x}_{1}}$,
将x1,x2代入得kPQ=$\frac{-k[({x}_{1}+{x}_{2})-2]}{{x}_{2}-{x}_{1}}$=$\frac{-k[(\frac{{k}^{2}-4k+5}{1+{k}^{2}}+\frac{{k}^{2}+4k+5}{1+{k}^{2}})-2]}{\frac{{k}^{2}+4k+5}{1+{k}^{2}}-\frac{{k}^{2}-4k+5}{1+{k}^{2}}}$=-1,
∴直线PQ的斜率为-1.
点评 本题考查点的轨迹的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意两点间距离公式、圆、韦达定理等知识点的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $\frac{2}{3}$ | C. | 11 | D. | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com