精英家教网 > 高中数学 > 题目详情
11.直线x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0及曲线y=cosx所围成图形的面积为2.

分析 直接利用定积分公式求解即可.

解答 解:直线x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0及曲线y=cosx所围成图形的面积为:${∫}_{\frac{π}{2}}^{\frac{3π}{2}}(-cosx)dx$=(-sinx)${|}_{\frac{π}{2}}^{\frac{3π}{2}}$=1+1=2.
故答案为:2.

点评 本题考查定积分的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,定点F1(1,0),F2(-1,0),动点P与两定点F1,F2距离的比为一个正数m.
(1)求点P的轨迹方程C,并说明轨迹是什么图形;
(2)若m=$\frac{\sqrt{2}}{2}$,过点A(1,2)作倾斜角互补的两条直线,分别交曲线C于P,Q两点,求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设等差数列{an}的前n项和为Sn,若S3=9,S5=30,则a7+a8+a9=63.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:$\underset{lim}{n→∞}$$\frac{4-3n}{2n+1}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值$-\frac{4}{3}$.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设随机变量ξ服从正态分布N(μ,σ2),函数f(x)=x2+8x+ξ没有零点的概率是$\frac{1}{2}$,则μ=(  )
A.2B.4C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$lg({\sqrt{3}-\sqrt{2}})$与$lg({\sqrt{3}+\sqrt{2}})$的等差中项是(  )
A.0B.$lg\frac{{\sqrt{3}-\sqrt{2}}}{{\sqrt{3}+\sqrt{2}}}$C.$lg({5-2\sqrt{6}})$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a>1,设函数f(x)=ax+x-4的零点是x1,g(x)=logax+x-4的零点为x2,则$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范围是(  )
A.[3.5,+∞)B.[1,+∞)C.[4,+∞)D.[4.5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,且椭圆上一点M与椭圆左右两个焦点构成的三角形周长为4+2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)如图,设点D为椭圆上任意一点,直线y=m和椭圆C交于A、B两点,且直线DA、DB与y轴分别交于P、Q两点,试探究∠PF1F2和∠QF1F2之间的等量关系并加以证明.

查看答案和解析>>

同步练习册答案