4£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=$\frac{1}{2}$an+$\frac{1}{{a}_{n}}$£¬Éèbn=$\frac{2}{\sqrt{{{a}_{n}}^{2}-2}}$£¬cn=$\frac{4{a}_{n}}{{{a}_{n}}^{2}-2}$£®
£¨1£©ÇóÖ¤£º¶ÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬an£¾$\sqrt{2}$£®
£¨2£©ÇóÖ¤£º¶ÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬bnÓëcn¶¼ÊÇÕýÕûÊý£®

·ÖÎö £¨1£©ÔËÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬Ê×ÏÈÑéÖ¤n=2µÄÇé¿ö£¬¼ÙÉèn=k£¬½áÂÛ³ÉÁ¢£¬ÔÙÓɺ¯Êýy=ax+$\frac{b}{x}$µÄÐÔÖÊ£¬¿ÉÖ¤n=k+1Ò²³ÉÁ¢£»
£¨2£©ÔËÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬Ê×ÏÈÑéÖ¤n=2µÄÇé¿ö£¬¼ÙÉèn=k£¬½áÂÛ³ÉÁ¢£¬ÔÙ½áºÏÌõ¼þ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½n=k+1Ò²³ÉÁ¢£¬½ø¶øµÃÖ¤£®

½â´ð Ö¤Ã÷£º£¨1£©µ±n=2ʱ£¬a2=$\frac{1}{2}$+1=$\frac{3}{2}$£¾$\sqrt{2}$£¬³ÉÁ¢£»
¼ÙÉèn=kʱ£¬ak£¾$\sqrt{2}$³ÉÁ¢£»
µ±n=k+1ʱ£¬ak+1=$\frac{1}{2}$ak+$\frac{1}{{a}_{k}}$£¾$\frac{1}{2}$•$\sqrt{2}$+$\frac{1}{\sqrt{2}}$=$\sqrt{2}$£¬
Ôòn=k+1ʱ£¬Ò²³ÉÁ¢£®
¶ÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬an£¾$\sqrt{2}$£®
£¨2£©µ±n=2ʱ£¬b2=$\frac{2}{\sqrt{{{a}_{2}}^{2}-2}}$=$\frac{2}{\sqrt{\frac{9}{4}-2}}$=4£¬
c2=$\frac{4{a}_{2}}{{{a}_{2}}^{2}-2}$=$\frac{4¡Á\frac{3}{2}}{\frac{9}{4}-2}$=24£¬b2Óëc2¶¼ÊÇÕýÕûÊý£»
¼ÙÉèn=k£¬bkÓëck¶¼ÊÇÕýÕûÊý£¬
¼´ÓÐn=k+1ʱ£¬bk+1=$\frac{2}{\sqrt{{{a}_{k+1}}^{2}-2}}$=$\frac{2}{\sqrt{£¨\frac{1}{2}{a}_{k}+\frac{1}{{a}_{k}}£©^{2}-2}}$=$\frac{2}{\frac{1}{2}{a}_{k}-\frac{1}{{a}_{k}}}$
=$\frac{4{a}_{k}}{{{a}_{k}}^{2}-2}$=ckΪÕýÕûÊý£¬
ck+1=$\frac{4{a}_{k+1}}{{{a}_{k+1}}^{2}-2}$=$\frac{8{a}_{k}£¨{{a}_{k}}^{2}+2£©}{£¨{{a}_{k}}^{2}-2£©^{2}}$=$\frac{4{a}_{k}}{{{a}_{k}}^{2}-2}$•$\frac{2£¨{{a}_{k}}^{2}+2£©}{{{a}_{k}}^{2}-2}$
=ck•2£¨1+$\frac{4}{{{a}_{k}}^{2}-2}$£©=ck•2£¨1+bk2£©£¬¼´ÎªÕýÕûÊý£®
ÔòÓжÔÒ»ÇÐn¡ÊN*£¬n¡Ý2£¬bnÓëcn¶¼ÊÇÕýÕûÊý£®

µãÆÀ ±¾Ì⿼²éÊýѧ¹éÄÉ·¨µÄÔËÓã¬Í¬Ê±¿¼²é²»µÈʽµÄÐÔÖʺͻ¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x+a}{{e}^{x}}$£¨a¡ÊR£¬ÆäÖÐe¡Ö2.71828¡­£©£¬¼Çf¡ä£¨x£©Îªº¯Êýf£¨x£©µÄµ¼º¯Êý£®
£¨¢ñ£©ÈôÇúÏßy=f£¨x£©ÔÚx=0´¦µÄÇÐÏßÓëÖ±Ïßx+y=0ƽÐУ¬ÇóaµÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©ÔÚ[-2£¬+¡Þ£©ÉϵÄ×î´óÖµ£»
£¨¢ó£©Èôa=-1£¬Áîan=f¡ä£¨n£©£¬n¡ÊN+£¬Ö¤Ã÷£º-252£¼a1+a2+a3+¡­+a2018£¼$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ìú½³Ê¦¸µÔÚ´òÖÆÑÌͲÍ䲱ʱ£¬ÎªÈ·±£¶Ô½Ó³ÉÖ±½Ç£¬ÔÚÌú°åÉϵÄϼôÏßÕýºÃÊÇÓàÏÒÇúÏß$y=acos\frac{x}{a}$µÄÒ»¸öÖÜÆÚµÄͼÏóÈçͼ£¬µ±Íä²±µÄÖ±¾¶Îª12cmʱ£¬aÓ¦ÊÇ6cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª½Ç¦ÁµÄ¶¥µãÓëÔ­µãÖØºÏ£¬Ê¼±ßÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ£¬Öձ߹ýµãP£¨sin$\frac{¦Ð}{8}$£¬cos$\frac{¦Ð}{8}$ £©£¬Ôòsin£¨2¦Á-$\frac{¦Ð}{12}$£©=$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¡°Çó£¨a1+a2+a3£©£¨b1+b2+b3+b4£©Õ¹¿ªÊ½µÄÏîÊý¡±ÖУ¬ÒªÍê³ÉµÄ¡°Ò»¼þÊ¡±ÊÇ´ÓǰÀ¨ºÅÀïµÄÈý¸öÊýµ±ÖзֱðÈ¡ÓëºóÀ¨ºÅµÄÏîÏà³Ë£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{a}{4x}$£¨x£¾0£¬a£¾0£©ÔÚx=3ʱȡµÃ×îСֵ£¬Ôò×îСֵΪ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ö´ÐÐij¸ö³ÌÐò£¬µçÄÔ»áËæ»úµØ°´ÈçÏÂÒªÇó¸øÍ¼ÖÐÁù¸öСԲͿɫ£®
¢ÙÓÐÎåÖÖ¸ø¶¨µÄÑÕÉ«¹©Ñ¡Óã»
¢Úÿ¸öСԲͿһÖÖÑÕÉ«£¬ÇÒͼÖб»Í¬Ò»ÌõÏß¶ÎÏàÁ¬Á½¸öСԲ²»ÄÜÍ¿ÏàͬµÄÑÕÉ«£®
ÈôµçÄÔÍê³ÉÿÖÖͿɫ·½°¸µÄ¿ÉÄÜÐÎÏàͬ£¬ÔòÖ´ÐÐÒ»´Î³ÌÐòºó£¬Í¼ÖиպÃÓÐËÄÖÖ²»Í¬µÄÑÕÉ«µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{9}{16}$B£®$\frac{3}{8}$C£®$\frac{18}{25}$D£®$\frac{12}{25}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ò»¸ö³µÁ¾ÖÆÔì³§Òý½øÁËÒ»ÌõĦÍгµ×°ÅäÁ÷Ë®Ïߣ¬³§¼ÒÔÚÿ¸öÐÇÆÚÄÚ£ºÍ¶ÈëµÄ¹Ì¶¨³É±¾3200Ôª£¬Ã¿Á¾³µµÄÆäËüͶÈëΪ100Ôª£¬Éú²úxÁ¾Ä¦ÍгµµÄ¡°Éú²ú¼ÛÖµ¡±Îª-2x2+600xÔª£®×¢£ºÖÜÀûÈó=¡°Éú²ú¼ÛÖµ¡±-£¨Ö̶ܹ¨³É±¾+ĦÍгµµÄÆäËüÊÕÈ룩£®
£¨¢ñ£©ÈôÕâ¼Ò¹¤³§ÀûÓÃÕâÌõÁ÷Ë®Ïߣ¬Ê¹³§¼ÒµÄÖÜÀûÈó²»µÍÓÚ16800Ôª£¬Çó³§¼ÒÉú²úĦÍгµµÄÊýÁ¿µÄȡֵ·¶Î§£»
£¨¢ò£©Çó¸Ã³§¼ÒµÄÿÁ¾Ä¦ÍгµµÄƽ¾ùÖÜÀûÈóµÄ×î´óÖµ¼°´Ëʱ³§¼ÒÉú²úĦÍгµµÄÊýÁ¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚ¡÷ABCÖУ¬ÈôBC=2£¬AC=1£¬¡ÏA=30¡ã£¬Ôò¡÷ABCÊÇ£¨¡¡¡¡£©
A£®¶Û½ÇÈý½ÇÐÎB£®Èñ½ÇÈý½ÇÐÎC£®Ö±½ÇÈý½ÇÐÎD£®ÐÎ×´²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸