精英家教网 > 高中数学 > 题目详情
14.求曲线$\frac{x^2}{9}+\frac{y^2}{4}=1$经过伸缩变换$φ:\left\{{\begin{array}{l}{{x^'}=\frac{1}{3}x}\\{{y^'}=\frac{1}{2}y}\end{array}}\right.$变换后的曲线方程,并说明它表示什么图形.

分析 利用变换公式化简,代入求解即可.

解答 解:由$φ:\left\{{\begin{array}{l}{{x^'}=\frac{1}{3}x}\\{{y^'}=\frac{1}{2}y}\end{array}}\right.$得:$\left\{{\begin{array}{l}{x=3{x^'}}\\{y=2{y^'}}\end{array}}\right.$,代入$\frac{x^2}{9}+\frac{y^2}{4}=1$中得:$\frac{{{{(3{x^'})}^2}}}{9}+\frac{{{{(2{y^'})}^2}}}{4}=1$,
∴经过伸缩变换后的曲线方程为:x′2+y′2=1.
它表示圆心在原点,半径为1的圆.

点评 本题考查变换的运算法则,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知点A(0,1),B(2,1),向量$\overrightarrow{AC}$=(-3,-2),则向量$\overrightarrow{BC}$=(  )
A.(5,2)B.(-5,-2)C.(-1,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{x+1}{x-1}-1,x>1}\\{2{-e}^{x},x≤1}\end{array}\right.$,若函数h(x)=f(x)-mx-2有且仅有两个零点,则实数m的取值范围(  )
A.(-6-4$\sqrt{2}$,0)∪(0,+∞)B.(-6+4$\sqrt{2}$,0)∪(0,+∞)C.(-6+4$\sqrt{2}$,0)D.(-6-4$\sqrt{2}$,-6+4$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为Sn,n∈N+,a3=5,S10=100.
(1)求数列{an}的通项公式;
(2)设bn=${2^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列叙述不正确的是(  )
A.概率是频率的稳定值,频率是概率的近似值
B.已知事件M⊆N,则当M发生时,N一定发生
C.若A,B为互斥事件,则P(A)+P(B)<1
D.若一生产厂家称,我们厂生产的产品合格率是0.98,则任取一件该产品,其是合格品的可能性大小为98%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,图中的四边形是边长为2的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的体积是(  )
A.$\frac{20}{3}$B.6C.$\frac{16}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若(m2-5m+4)+(m2-2m)i>0,则实数m的值为(  )
A.1B.0或2C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{1-{2}^{1-x}(x≥1)}\\{{x}^{3}-3x+2(x<1)}\end{array}\right.$,且方程f(x)=a有两个不同实根,则实数a范围是(  )
A.(-∞,0)B.(0,1)C.(1,5)D.[1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(2,3)内为减函数,在区间(5,+∞)为增函数,则实数a的取值范围是(  )
A.[3,4]B.[5,7]C.[4,6]D.[7,8]

查看答案和解析>>

同步练习册答案