精英家教网 > 高中数学 > 题目详情
9.函数f(x)$\left\{\begin{array}{l}{|lo{g}_{2}(|x-1|)-1|\\;x≠1}\\{0\\;x=1}\end{array}\right.$的单调递增区间为(-1,1),[3,+∞).

分析 解|x-1|≥2,以及0<|x-1|<2便可去掉绝对值号得出$f(x)=\left\{\begin{array}{l}{lo{g}_{2}(x-1)-1}&{x≥3}\\{lo{g}_{2}(1-x)-1}&{x≤-1}\\{-lo{g}_{2}(1-x)+1}&{-1<x<1}\\{-lo{g}_{2}(x-1)+1}&{1<x<3}\\{0}&{x=1}\end{array}\right.$,这样根据对数函数及复合函数的单调性即可找出f(x)的单调递增区间.

解答 解:解|x-1|≥2得x≥3,或x≤-1,解0<|x-1|<2得,-1<x<1,或1<x<3;
$f(x)=\left\{\begin{array}{l}{lo{g}_{2}(x-1)-1}&{x≥3}\\{lo{g}_{2}(1-x)-1}&{x≤-1}\\{-lo{g}_{2}(1-x)+1}&{-1<x<1}\\{-lo{g}_{2}(x-1)+1}&{1<x<3}\\{0}&{x=1}\end{array}\right.$;
∴f(x)在[3,+∞),(-1,1)上单调递增;
∴f(x)的单调递增区间为(-1,1),[3,+∞).
故答案为:(-1,1),[3,+∞).

点评 考查含绝对值不等式的解法,含绝对值函数的处理方法:讨论x去绝对值号,对数函数的单调性、复合函数的单调性,以及复合函数单调区间的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=1og2(x2-ax-a)在区间(-∞,-$\frac{1}{2}$)上是单调递减函数,则实数a的取值范围为[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设A={x|2x-3>7},B={x|x+2<10},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的导数:
(1)y=(lnx+1)100
(2)y=4sin3(2x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在(-∞,-∞)的奇函数f(x)满足f(2-x)=f(x),当x∈($\frac{1}{2}$,$\frac{3}{2}$),f(x)=x3+1nx,则f(2015)的值为(  )
A.1B.-1C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)满足f(sinx)=sin2x.则f(cos75°)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=log(a-1)(2x+1)在(-$\frac{1}{2}$,0)内恒有f(x)>0,则a的取值范围是(  )
A.a>1B.0<a<1C.a<-1或a>1D.1<a<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=ax2+bx+c的图象是以点M(-1,2)为顶点的抛物线,并且这个图象过点A(1,6).求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某单位有老年人30 人,中年人60人,青年人90人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是(  )
A.6,12,18B.7,11,19C.6,13,17D.7,12,17

查看答案和解析>>

同步练习册答案