精英家教网 > 高中数学 > 题目详情
1.已知f(x)=log(a-1)(2x+1)在(-$\frac{1}{2}$,0)内恒有f(x)>0,则a的取值范围是(  )
A.a>1B.0<a<1C.a<-1或a>1D.1<a<2

分析 由x∈(-$\frac{1}{2}$,0),求出2x+1∈(0,1)内恒有f(x)>0,由对数函数性质可得底数0<a-1<1.

解答 解:x∈(-$\frac{1}{2}$,0),则2x+1∈(0,1)内恒有f(x)>0,
∴0<a-1<1,
∴1<a<2;
故选D.

点评 考查了对数函数的性质,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知1gx+1gy=21g(2x-3y),求log${\;}_{\frac{2}{3}}$$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足x+2y=1,则函数z=2x+4y的最小值为(  )
A.$\frac{5}{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)$\left\{\begin{array}{l}{|lo{g}_{2}(|x-1|)-1|\\;x≠1}\\{0\\;x=1}\end{array}\right.$的单调递增区间为(-1,1),[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,Sn=n2an-n(n-1),n=1,2,…求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=|log${\;}_{\frac{1}{2}}$x|的定义域为[$\frac{1}{2}$,m],值域为[0,1],则m的取值范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p;函数y=log2|x-a|在(1,+∞)上是增函数;命题q:函数y=2${\;}^{{x}^{2}+2ax+1}$在(0,+∞)上是增函数,若“p∧q”为假,“p∨q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.根式$\frac{1}{\root{3}{{3}^{2}}}$用分数指数幂表示为${3}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=5,$\overrightarrow{b}$=(-3,4),若$\overrightarrow{a}$,$\overrightarrow{b}$方向相反,则$\overrightarrow{a}$的坐标形式为(3,-4).

查看答案和解析>>

同步练习册答案