精英家教网 > 高中数学 > 题目详情
13.已知△ABC的顶点A(0,1),B(2,0),C(5,2),求(1)BC边上的中线AD所在的直线方程;(2)△ABC的面积.

分析 (1)求出中点D的坐标,结合AD两点的纵坐标相等,可得AD的方程.
(2)求出线段BC的长度,求出直线BC的方程和点A到直线BC的距离,即可求得,∴△ABC的面积

解答 解:(1)由已知得BC中点D的坐标为D($\frac{7}{2}$,1),
∴中线AD所在直线的方程是y=1.
(2)∵BC=$\sqrt{{5}^{2}+(2-1)^{2}}$=$\sqrt{26}$,
直线BC的方程是$\frac{y}{2}=\frac{x-2}{5-2}$,即2x-3y-4=0,
点A到直线BC的距离是d=$\frac{7}{\sqrt{13}}$,
∴△ABC的面积是S=$\frac{1}{2}$BC•d=$\frac{7}{2}\sqrt{2}$

点评 本题考查用两点式求直线方程的方法,点到直线的距离公式的应用,求点A到直线BC的距离是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{3x}{ln2x}$.
(1)求函数f(x)的单调减区间;
(2)已知不等式2x>(2x)a对任意x∈($\frac{1}{2}$,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\frac{1-x}{1+x}$,g(x)=x2+1,则g[f(x)]=$\frac{2+2{x}^{2}}{1+2x+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若f(x-$\frac{1}{x}$)=x2$+\frac{1}{{x}^{2}}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(x-1)2+y2=1,则$\frac{y}{x+1}$的最大值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义在[1,4]上的函数f(x)为减函数,解不等式f(1-2x)>f(4-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-ax+2,若命题,?x∈[1,2],f(x)<0为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列分段函数的定义域,并作出函数的图形.
(1)f(x)=$\left\{\begin{array}{l}{\sqrt{4-{x}^{2}},|x|<2}\\{{x}^{2}-1,2≤|x|<4}\end{array}\right.$;
(2)f(x)$\left\{\begin{array}{l}{\frac{1}{x},x<0}\\{x-3,0≤x<1}\\{-2x+1,x≥1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若θ是△ABC的一个内角,且sinθcosθ=-$\frac{1}{8}$,则sinθ-cosθ的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步练习册答案