精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1中,E为棱CC1的中点.如果一只蜜蜂在正方体ABC-A1B1C1D1内部任意飞,则它飞入三棱锥A1-BDE内部的概率为(  )
分析:由已知中正方体ABCD-A1B1C1D1中,E为棱CC1的中点.如果一只蜜蜂在正方体ABC-A1B1C1D1内部任意飞,我们设正方体ABCD-A1B1C1D1的棱长为2,分别计算出正方体的体积及棱锥的体积,代入几何概型概率公式,即可得到答案.
解答:解:设正方体ABCD-A1B1C1D1的棱长为2,则
V正方体=8
又∵E为棱CC1的中点,
则BD=A1B=A1D=2
2
,BE=DE=
5
,A1E=3,
设AC与BD交于点O,连接A10,EO,则EO=
3
,A1O=
6

由勾股定理,易得EO⊥A1O,又∵A1O⊥BD,EO∩BD=O
∴A1O⊥平面BDE,即A1O为三棱锥A1-BDE高
VA1-BDE=
1
3
SBDEA1O
=2
则它飞入三棱锥A1-BDE内部的概率P=
1
4

故选A
点评:本题考查的知识点是几何概型,其中根据已知计算出正方体的体积及棱锥的体积是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案