| A. | 1 | B. | -1 | C. | -$\frac{3}{2}$ | D. | -3 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=1}\\{x-y=0}\end{array}\right.$,解得A(1,1),
化目标函数z=-2x+y为y=2x+z,由图可知,当直线y=2x+z过A时,直线在y轴上的截距最大,为-1.
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2-1≤0 | B. | ?x∈R,x2-1>0 | C. | ?x0∈R,x02-1>0 | D. | ?x0∈R,x02-1<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+2y+7=0 | B. | x+2y-13=0或x+2y+7=0 | ||
| C. | x+2y+13=0 | D. | x+2y+13=0或x+2y-7=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 10 | 15 | 17 | 20 | 25 | 28 | 32 |
| y | 1 | 1.3 | 1.8 | 2 | 2.6 | 2.7 | 3.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{3}$,1) | B. | ($\frac{1}{3}$,$\frac{4}{5}$) | C. | (0,$\frac{4}{5}$) | D. | (0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com