精英家教网 > 高中数学 > 题目详情
1.平行于直线l:x+2y-3=0,且与l的距离为2$\sqrt{5}$的直线的方程为(  )
A.x+2y+7=0B.x+2y-13=0或x+2y+7=0
C.x+2y+13=0D.x+2y+13=0或x+2y-7=0

分析 由题意设与直线l:x+2y-3=0平行的直线方程为x+2y+m=0,然后利用两平行线间的距离公式列式求得m值,则答案可求.

解答 解:设与直线l:x+2y-3=0平行的直线方程为x+2y+m=0,
由$\frac{|-3-m|}{\sqrt{5}}=2\sqrt{5}$,解得:m=-13或m=7.
∴所求直线方程为x+2y-13=0或x+2y+7=0.
故选:B.

点评 本题考查直线的一般式方程,考查了两平行线间距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.某几何体的三视图如图所示(单位:cm),则该几何体的体积是3cm3,表面积是11+$\sqrt{5}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$cos({α-\frac{π}{6}})+sinα=\frac{{4\sqrt{3}}}{5}$,且$α∈({\frac{π}{2},π})$,则$sin({α+\frac{π}{3}})$的值是(  )
A.$\frac{{4\sqrt{3}-3}}{10}$B.$\frac{{4\sqrt{3}+3}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{3\sqrt{3}+4}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线方程为(  )
A.y=±3xB.y=±$\frac{1}{3}$xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$,则目标函数z=-2x+y的最大值为(  )
A.1B.-1C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(m,$\sqrt{3}$),且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前项n和为Sn,a1=1,Sn与-3Sn+1的等差中项是$-\frac{3}{2}$.
(1)证明数列{Sn-$\frac{3}{2}$}为等比数列;
(2)求数列{an}的通项公式;
(3)若对任意正整数n,不等式k≤Sn恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x≤$\sqrt{13}$},a=$\sqrt{11}$,那么(  )
A.a?AB.a∉AC.{a}∉AD.a∈A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-3),若m$\overrightarrow{a}$+$\overrightarrow{b}$与3$\overrightarrow{a}$-$\overrightarrow{b}$共线,则实数m=(  )
A.-3B.3C.-$\frac{25}{19}$D.$\frac{25}{19}$

查看答案和解析>>

同步练习册答案