精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的前项n和为Sn,a1=1,Sn与-3Sn+1的等差中项是$-\frac{3}{2}$.
(1)证明数列{Sn-$\frac{3}{2}$}为等比数列;
(2)求数列{an}的通项公式;
(3)若对任意正整数n,不等式k≤Sn恒成立,求实数k的最大值.

分析 (1)由已知可得${S}_{n+1}=\frac{1}{3}{S}_{n}+1$,进一步得到$\frac{{S}_{n+1}-\frac{3}{2}}{{S}_{n}-\frac{3}{2}}=\frac{1}{3}$,求出${S}_{1}-\frac{3}{2}$的值,可得数列{Sn-$\frac{3}{2}$}是以$-\frac{1}{2}$为首项,$\frac{1}{3}$为公比的等比数列;
(2)由等比数列的通项公式求得Sn,再由an=Sn-Sn-1(n≥2)求数列{an}的通项公式;
(3)利用函数单调性求出Sn的最小值,代入k≤Sn恒成立求实数k的最大值.

解答 (1)证明:∵Sn与-3Sn+1的等差中项是$-\frac{3}{2}$,
∴Sn-3Sn+1=-3(n∈N*),即${S}_{n+1}=\frac{1}{3}{S}_{n}+1$,
由此得${S}_{n+1}-\frac{3}{2}=(\frac{1}{3}{S}_{n}+1)-\frac{3}{2}=\frac{1}{3}{S}_{n}-\frac{1}{2}=\frac{1}{3}({S}_{n}-\frac{3}{2})$,
即$\frac{{S}_{n+1}-\frac{3}{2}}{{S}_{n}-\frac{3}{2}}=\frac{1}{3}$,
又${S}_{1}-\frac{3}{2}={a}_{1}-\frac{3}{2}=-\frac{1}{2}$,
数列{Sn-$\frac{3}{2}$}是以$-\frac{1}{2}$为首项,$\frac{1}{3}$为公比的等比数列;
(2)解:由(1)得${S}_{n}-\frac{3}{2}=-\frac{1}{2}×(\frac{1}{3})^{n-1}$,即${S}_{n}=\frac{3}{2}-\frac{1}{2}×(\frac{1}{3})^{n-1}$,
∴当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=[\frac{3}{2}-\frac{1}{2}×(\frac{1}{3})^{n-1}]-[\frac{3}{2}-\frac{1}{2}×(\frac{1}{3})^{n-2}]$=$\frac{1}{{3}^{n-1}}$,
又n=1时,a1=1也适合上式,
∴${a}_{n}=\frac{1}{{3}^{n-1}}$;
(3)解:要使不等式k≤Sn对任意正整数n恒成立,即k小于或等于Sn的所有值.
又∵${S}_{n}=\frac{3}{2}-\frac{1}{2}×(\frac{1}{3})^{n-1}$是单调递增数列,
且当n=1时,Sn取得最小值${S}_{1}=\frac{3}{2}-\frac{1}{2}×(\frac{1}{3})^{1-1}=1$,
要使k小于或等于Sn的所有值,即k≤1,
∴实数k的最大值为1.

点评 本题考查数列递推式,考查了等比关系的确定,训练了恒成立问题的求解方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设随机变量X的分布列为
X123
P$\frac{1}{2}$$\frac{1}{5}$a
则a=$\frac{3}{10}$;E(X)=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题p:“?x0∈R“,x02-1≤0的否定¬p为(  )
A.?x∈R,x2-1≤0B.?x∈R,x2-1>0C.?x0∈R,x02-1>0D.?x0∈R,x02-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平行于直线l:x+2y-3=0,且与l的距离为2$\sqrt{5}$的直线的方程为(  )
A.x+2y+7=0B.x+2y-13=0或x+2y+7=0
C.x+2y+13=0D.x+2y+13=0或x+2y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司利润y与销售总额x(单位:千万元)之间有如下对应数据:
x10151720252832
y11.31.822.62.73.3
(1)画出散点图;
(2)半y与x是否具有线性相关关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=a+(a-2)i(a∈R,i是虚数单位)为实数,则$\int_0^a{\sqrt{4-{x^2}}dx}$的值是(  )
A.2+πB.$2+\frac{π}{2}$C.πD.4+4π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.单调递减的数列{an}的通项公式an=$\left\{\begin{array}{l}{(1-3a)n+14a,n≤8}\\{lo{g}_{a}(n-8),n>8}\end{array}\right.$,则正数a的取值范围是(  )
A.($\frac{1}{3}$,1)B.($\frac{1}{3}$,$\frac{4}{5}$)C.(0,$\frac{4}{5}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的两条准线间的距离为$\frac{8\sqrt{6}}{3}$,且离心率为$\frac{\sqrt{3}}{2}$,过点M(0,2)的直线l与椭圆相交于不同的两点P,Q,点N在线段PQ上.
(1)求椭圆C的标准方程;
(2)设$\frac{|PM|}{|PN|}$=$\frac{|MQ|}{|NQ|}$=λ,若直线l与y轴不重合,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a、b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5].

查看答案和解析>>

同步练习册答案