精英家教网 > 高中数学 > 题目详情
13.已知复数z=a+(a-2)i(a∈R,i是虚数单位)为实数,则$\int_0^a{\sqrt{4-{x^2}}dx}$的值是(  )
A.2+πB.$2+\frac{π}{2}$C.πD.4+4π

分析 首先复数为实数,得到a,然后利用定积分的几何意义求值.

解答 解:因为复数z=a+(a-2)i(a∈R,i是虚数单位)为实数,所以a=2,所以$\int_0^a{\sqrt{4-{x^2}}dx}$=${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$=$\frac{1}{4}π×4$=π;
故选:C

点评 本题考查了复数的性质以及定积分的计算;比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD,
(Ⅰ)求证:面ADE⊥面 BDE;
(Ⅱ)求直线AD与平面DCE所成角的正弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线方程为(  )
A.y=±3xB.y=±$\frac{1}{3}$xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(m,$\sqrt{3}$),且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前项n和为Sn,a1=1,Sn与-3Sn+1的等差中项是$-\frac{3}{2}$.
(1)证明数列{Sn-$\frac{3}{2}$}为等比数列;
(2)求数列{an}的通项公式;
(3)若对任意正整数n,不等式k≤Sn恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式|x|•(1-2x)>0的解集是(  )
A.$(-∞,\frac{1}{2})$B.(-∞,0)∪$(0,\frac{1}{2})$C.$(\frac{1}{2},+∞)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x≤$\sqrt{13}$},a=$\sqrt{11}$,那么(  )
A.a?AB.a∉AC.{a}∉AD.a∈A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是(  )
A.{1,2,3,4,5}B.{1,2,3}C.{3,4}D.{4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值(  )
A.一定等于零B.一定大于零C.一定小于零D.正负都有可能

查看答案和解析>>

同步练习册答案