分析 (Ⅰ)AB=2AD,∠DAB=60°,可得AD⊥DB,再利用线面面面垂直的判定与性质定理即可证明.
(Ⅱ)由已知可得BE⊥面ABCD,点E到面ABCD的距离就是线段BE的长为2,设AD与平面DCE所成角为θ,点A到面DCE的距离为d,利用VA-DCE=VE-ADC,即可得出.
解答 解:(Ⅰ)∵AB=2AD,∠DAB=60°,∴AD⊥DB,
又BE⊥AD,且BD∩BE=B,
∴AD⊥面BDE,又AD?面ADE,∴面ADE⊥面 BDE;
(Ⅱ)∵BE⊥AD,AB⊥BE,∴BE⊥面ABCD,
∴点E到面ABCD的距离就是线段BE的长为2,
设AD与平面DCE所成角为θ,点A到面DCE的距离为d,
由VA-DCE=VE-ADC得:$\frac{1}{3}×d×{S_{△CDE}}=\frac{1}{3}×|BE|×{S_{△ACD}}$,可解得$d=\frac{{\sqrt{30}}}{10}$,
而AD=1,则$sinθ=\frac{d}{|AD|}=\frac{{\sqrt{30}}}{10}$,
故直线AD与平面DCE所成角的正弦值为$\frac{{\sqrt{30}}}{10}$.
点评 本题考查了线面面面垂直的判定与性质定理、三棱锥的体积计算公式、线面角,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{13}$ | B. | $\frac{36}{5}$ | C. | $\frac{36}{13}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 56 | B. | -56 | C. | 35 | D. | -35 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| X | 1 | 2 | 3 |
| P | $\frac{1}{2}$ | $\frac{1}{5}$ | a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+π | B. | $2+\frac{π}{2}$ | C. | π | D. | 4+4π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com