精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值(  )
A.一定等于零B.一定大于零C.一定小于零D.正负都有可能

分析 先判断奇偶性和单调性,先由单调性定义由自变量的关系得到函数关系,然后三式相加得解.

解答 解:函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$,f(-x)=-f(x),函数f(x)是奇函数,根据同增为增,可得函数f(x)是增函数,
∵x1+x2>0,x2+x3>0,x3+x1>0,
∴x1>-x2,x2>-x3x3>-x1
∴f(x1)>f(-x2,f(x2)>f(-x3),f(x3)>f(-x1
∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,
三式相加得:
f(x1)+f(x2)+f(x3)>0,
故选:B.

点评 本题主要考查函数的奇偶性和单调性的定义,关键是通过变形转化到定义模型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知复数z=a+(a-2)i(a∈R,i是虚数单位)为实数,则$\int_0^a{\sqrt{4-{x^2}}dx}$的值是(  )
A.2+πB.$2+\frac{π}{2}$C.πD.4+4π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F为抛物线C:y2=8x,曲线y=$\frac{k}{x}$(k>0)与C交于点A,直线FA恰与曲线y=$\frac{k}{x}$(k>0)相切于点A,直线FA于C的准线交于点B,则$\frac{|FA|}{|BA|}$等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.集合A={1,2,3,4},B={x|(x-1)(x-5)<0},则A∩B={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a、b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于定义域为R的函数y=f(x),部分x与y的对应关系如表:
x-2-1012345
y02320-102
(1)求f{f[f(0)]};
(2)数列{xn}满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,求x1+x2+…+x4n
(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知${(x-\frac{a}{x})^7}$展开式中x3的系数为84,则正实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某口袋中有3个白球和a个黑球(a∈N*),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若Eξ=3,则Dξ=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步练习册答案