| A. | 一定等于零 | B. | 一定大于零 | C. | 一定小于零 | D. | 正负都有可能 |
分析 先判断奇偶性和单调性,先由单调性定义由自变量的关系得到函数关系,然后三式相加得解.
解答 解:函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$,f(-x)=-f(x),函数f(x)是奇函数,根据同增为增,可得函数f(x)是增函数,
∵x1+x2>0,x2+x3>0,x3+x1>0,
∴x1>-x2,x2>-x3x3>-x1,
∴f(x1)>f(-x2,f(x2)>f(-x3),f(x3)>f(-x1)
∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,
三式相加得:
f(x1)+f(x2)+f(x3)>0,
故选:B.
点评 本题主要考查函数的奇偶性和单调性的定义,关键是通过变形转化到定义模型.
科目:高中数学 来源: 题型:选择题
| A. | 2+π | B. | $2+\frac{π}{2}$ | C. | π | D. | 4+4π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| y | 0 | 2 | 3 | 2 | 0 | -1 | 0 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com